Nejvíce citovaný článek - PubMed ID 31783572
The Use of a Biopolymer Conjugate for an Eco-Friendly One-Pot Synthesis of Palladium-Platinum Alloys
Background/Objectives: Increasing drugs' stability and adequately protecting them against degradation will ensure a decrease in their price and broader availability of pharmaceutical substances. This is of great importance, especially for drugs used to treat the most common diseases in the population, such as hypertension. The study examined two newly synthesized substances from the angiotensin I-converting enzyme inhibitor (ACEI) group as potential drugs. ACEIs are among the leading drugs used in the treatment of hypertension in the world. The chemical modifications of the tested substances applied concerned the places most susceptible to degradation. The presented work analyzed the compatibility of new derivatives with selected excipients used in pharmacy. Methods: Thermogravimetric (TGA) and differential thermal analyses (c-DTA) were used as the main methods. In addition, non-thermal methods such as colorimetry analysis, Fourier-transform infrared (FTIR) and UV spectroscopy were used. Results: Based on the conducted studies, it can be concluded that the incompatibility of IND-1 with glucose anhydrous and lactose monohydrate occurs only when the mixture is stored at higher temperatures. For the remaining IND-1 and IND-2 mixtures with excipients, compatibility was demonstrated. Conclusions: The obtained results confirmed the usefulness of the applied thermal analyses (TGA and c-DTA) for assessing the compatibility of the tested potential drugs with excipients. However, in the case of incompatibility reactions of substances occurring under the influence of elevated temperatures, such as the Maillard reaction, it is necessary to use non-thermal methods to obtain the right result.
- Klíčová slova
- ACEI, FTIR, TGA, UV spectroscopy, c-DTA, colorimetry analysis, compatibility, pharmaceutical excipients,
- Publikační typ
- časopisecké články MeSH
Natural biopolymers, a class of materials extracted from renewable sources, is garnering interest due to growing concerns over environmental safety; biopolymers have the advantage of biocompatibility and biodegradability, an imperative requirement. The synthesis of nanoparticles and nanofibers from biopolymers provides a green platform relative to the conventional methods that use hazardous chemicals. However, it is challenging to characterize these nanoparticles and fibers due to the variation in size, shape, and morphology. In order to evaluate these properties, microscopic techniques such as optical microscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) are essential. With the advent of new biopolymer systems, it is necessary to obtain insights into the fundamental structures of these systems to determine their structural, physical, and morphological properties, which play a vital role in defining their performance and applications. Microscopic techniques perform a decisive role in revealing intricate details, which assists in the appraisal of microstructure, surface morphology, chemical composition, and interfacial properties. This review highlights the significance of various microscopic techniques incorporating the literature details that help characterize biopolymers and their derivatives.