Most cited article - PubMed ID 31861204
A Hybrid Lab-on-a-Chip Injector System for Autonomous Carbofuran Screening
Standard methods for chemical food safety testing in official laboratories rely largely on liquid or gas chromatography coupled with mass spectrometry. Although these methods are considered the gold standard for quantitative confirmatory analysis, they require sampling, transferring the samples to a central laboratory to be tested by highly trained personnel, and the use of expensive equipment. Therefore, there is an increasing demand for portable and handheld devices to provide rapid, efficient, and on-site screening of food contaminants. Recent technological advancements in the field include smartphone-based, microfluidic chip-based, and paper-based devices integrated with electrochemical and optical biosensing platforms. Furthermore, the potential application of portable mass spectrometers in food testing might bring the confirmatory analysis from the laboratory to the field in the future. Although such systems open new promising possibilities for portable food testing, few of these devices are commercially available. To understand why barriers remain, portable food analyzers reported in the literature over the last ten years were reviewed. To this end, the analytical performance of these devices and the extent they match the World Health Organization benchmark for diagnostic tests, i.e., the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end-users (ASSURED) criteria, was evaluated critically. A five-star scoring system was used to assess their potential to be implemented as food safety testing systems. The main findings highlight the need for concentrated efforts towards combining the best features of different technologies, to bridge technological gaps and meet commercialization requirements.
Pesticides have been extensively used in agriculture to protect crops and enhance their yields, indicating the need to monitor for their toxic residues in foodstuff. To achieve that, chromatographic methods coupled to mass spectrometry is the common analytical approach, combining low limits of detection, wide linear ranges, and high accuracy. However, these methods are also quite expensive, time-consuming, and require highly skilled personnel, indicating the need to seek for alternatives providing simple, low-cost, rapid, and on-site results. In this study, we critically review the available screening methods for pesticide residues on the basis of optical detection during the period 2016-2020. Optical biosensors are commonly miniaturized analytical platforms introducing the point-of-care (POC) era in the field. Various optical detection principles have been utilized, namely, colorimetry, fluorescence (FL), surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). Nanomaterials can significantly enhance optical detection performance and handheld platforms, for example, handheld SERS devices can revolutionize testing. The hyphenation of optical assays to smartphones is also underlined as it enables unprecedented features such as one-click results using smartphone apps or online result communication. All in all, despite being in an early stage facing several challenges, i.e., long sample preparation protocols or interphone variation results, such POC diagnostics pave a new road into the food safety field in which analysis cost will be reduced and a more intensive testing will be achieved.
- Keywords
- bioassays, biosensors, food, optical detection, pesticide residues, point-of-care diagnostics, screening methods, smartphones,
- Publication type
- Journal Article MeSH
- Review MeSH
Smartphone based devices (SBDs) have the potential to revolutionize food safety control by empowering citizens to perform screening tests. To achieve this, it is of paramount importance to understand current research efforts and identify key technology gaps. Therefore, a systematic review of optical SBDs in the food safety sector was performed. An overview of reviewed SBDs is given focusing on performance characteristics as well as image analysis procedures. The state-of-the-art on commercially available SBDs is also provided. This analysis revealed several important technology gaps, the most prominent of which are: (i) the need to reach a consensus regarding optimal image analysis, (ii) the need to assess the effect of measurement variation caused by using different smartphones and (iii) the need to standardize validation procedures to obtain robust data. Addressing these issues will drive the development of SBDs and potentially unlock their massive potential for citizen-based food control.
- Keywords
- Colorimetric assay, Fluorescence assay, Food safety, Image analysis, Lateral flow immunoassay, Paper-based assay, Portable, Smartphones,
- Publication type
- Journal Article MeSH
- Review MeSH