Most cited article - PubMed ID 32005908
Hidden diversity in the Brazilian Atlantic rainforest: the discovery of Jurasaidae, a new beetle family (Coleoptera, Elateroidea) with neotenic females
Rhagophthalmidae are a small beetle family known from the eastern Palaearctic and Oriental realms. Rhagophthalmidae are closely related to railroad worms (Phengodidae) and fireflies (Lampyridae) with which they share highly modified paedomorphic females and the ability to emit light. Currently, Rhagophthalmidae include 66 species classified in the following 12 genera: Bicladodrilus Pic, 1921 (two spp.), Bicladum Pic, 1921 (two spp.), Dioptoma Pascoe, 1860 (two spp.), Diplocladon Gorham, 1883 (two spp.), Dodecatoma Westwood, 1849 (eight spp.), Falsophrixothrix Pic, 1937 (six spp.), Haplocladon Gorham, 1883 (two spp.), Menghuoius Kawashima, 2000 (three spp.), Mimoochotyra Pic, 1937 (one sp.), Monodrilus Pic, 1921 (two spp. in two subgenera), Pseudothilmanus Pic, 1918 (two spp.), and Rhagophthalmus Motschulsky, 1854 (34 spp.). The replacement name Haplocladongorhami Kundrata, nom. nov. is proposed for Diplocladonhasseltii Gorham, 1883b (described in subgenus Haplocladon) which is preoccupied by Diplocladonhasseltii Gorham, 1883a. The genus Reductodrilus Pic, 1943 is tentatively placed in Lampyridae: Ototretinae. Lectotypes are designated for Pseudothilmanusalatus Pic, 1918 and P.marginalis Pic, 1918. Interestingly, in the eastern part of their distribution, Rhagophthalmidae have remained within the boundaries of the Sunda Shelf and the Philippines demarcated by the Wallace Line, which separates the Oriental and Australasian realms. This study is intended to be a first step towards a comprehensive revision of the group on both genus and species levels. Additionally, critical problems and prospects for rhagophthalmid research are briefly discussed.
- Keywords
- Catalogue, Drilidae, Lampyridae, Oriental Region, Phengodidae, classification, neoteny,
- Publication type
- Journal Article MeSH
The soft-bodied click-beetle genus Malacogaster Bassi, 1834 from the Mediterranean region has never been taxonomically revised to date. Information on its morphology, intra- and interspecific variability, systematics and distribution is fragmented and most species have not been properly studied since their description. Therefore, in this study we summarize all available information on the genus Malacogaster. Altogether, we recognize 10 valid species from the area including the Canary Islands, Iberian Peninsula, Balearic Islands, northern coast of Africa, Sardinia, and Sicily. Malacogaster ruficollis Dodero, 1925, stat. nov., which was originally described as a variety of M. bassii Lucas, 1870 and later synonymized with it, is considered a separate species. Malacogaster parallelocollis Reitter, 1894, syn. nov. and M. olcesei var. reductus Pic, 1951, syn. nov. are synonymized with M. maculiventris Reitter, 1894. Malacogaster notativentris Pic, 1951, syn. nov. and M. olcesei Pic, 1951, syn. nov. are synonymized with M. passerinii Bassi, 1834. Lectotypes are designated for M. maculiventris Reitter, 1894, M. nigripes heydeni Reitter, 1894, M. parallelocollis Reitter, 1894, M. thoracica Redtenbacher, 1858, M. olcesei Pic, 1951, and M. rubripes Peyerimhoff, 1949 to fix their identity.
- Keywords
- Africa, Cantharoidea, Coleoptera, Elateroidea, Italy, Spain, identification key, neoteny, systematics,
- Publication type
- Journal Article MeSH
Paedomorphosis is a heterochronic syndrome in which adult individuals display features of their immature forms. In beetles, this phenomenon occurs widely in the superfamily Elateroidea, including the net-winged beetles (Lycidae), and, due to the usual flightlessness of paedomorphic females, it is hypothesized to cause speciation rates higher than in non-paedomorphic lineages. However, some fossils of paedomorphic lycids do not support this with palaeobiological data. Discovery of new Lycidae fossils attributed to the West Indian extant paedomorphic genus Cessator Kazantsev in the Dominican amber also suggests morphological stasis within this genus in the Greater Antilles. We describe Cessator anachronicus Ferreira and Ivie, sp. nov. based on adult males, as well as the first ever recorded fossil net-winged beetle larva of the same genus. We propose that the relatively young age of the studied fossils combined with the stable conditions in the forest floor of the Greater Antilles through the last tens of million years could explain the exceptionally conserved morphology in the net-winged beetles affected by the paedomorphic syndrome.
- MeSH
- Coleoptera * anatomy & histology MeSH
- Amber * MeSH
- Forests MeSH
- Fossils MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Dominican Republic MeSH
- Names of Substances
- Amber * MeSH
We here report a new elateroid, Anoeuma lawrencei Li, Kundrata and Cai gen. et sp. nov., from mid-Cretaceous Burmese amber. Though superficially similar to some soft-bodied archostematans, Anoeuma could be firmly placed in the polyphagan superfamily Elateroidea based on the hind wing venation. Detailed morphological comparisons between extant elateroids and the Cretaceous fossils suggest that the unique character combination does not fit with confidence into any existing soft-bodied elateroid group, although some characters indicate possible relationships between Anoeuma and Omalisinae. Our discovery of this new lineage further demonstrates the past diversity and morphological disparity of soft-bodied elateroids.
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Jurasaidae are a family of neotenic elateroid beetles which was described recently from the Brazilian Atlantic Forest biodiversity hotspot based on three species in two genera. All life stages live in the soil, including the larviform females, and only adult males are able to fly. Here, we report the discovery of two new species, Jurasai miraculum sp. nov. and J. vanini sp. nov., and a new, morphologically remarkable population of J. digitusdei Rosa et al., 2020. Our discovery sheds further light on the diversity and biogeography of the group. Most species of Jurasaidae are known from the rainforest remnants of the Atlantic Forest, but here for the first time we report a jurasaid species from the relatively drier Atlantic Forest/Caatinga transitional zone. Considering our recent findings, minute body size and cryptic lifestyle of all jurasaids, together with potentially high numbers of yet undescribed species of this family from the Atlantic Forest and possibly also other surrounding ecoregions, we call for both field research in potentially suitable localities as well as for a detailed investigation of a massive amount of already collected but still unprocessed materials deposited in a number of Brazilian institutes, laboratories and collections.
- Keywords
- Brazil, caatinga, classification, distribution, morphology, nature conservation, paedomorphism, systematics,
- Publication type
- Journal Article MeSH
Bioluminescent beetles of the superfamily Elateroidea (fireflies, fire beetles, glow-worms) are the most speciose group of terrestrial light-producing animals. The evolution of bioluminescence in elateroids is associated with unusual morphological modifications, such as soft-bodiedness and neoteny, but the fragmentary nature of the fossil record discloses little about the origin of these adaptations. We report the discovery of a new bioluminescent elateroid beetle family from the mid-Cretaceous of northern Myanmar (ca 99 Ma), Cretophengodidae fam. nov. Cretophengodes azari gen. et sp. nov. belongs to the bioluminescent lampyroid clade, and would appear to represent a transitional fossil linking the soft-bodied Phengodidae + Rhagophthalmidae clade and hard-bodied elateroids. The fossil male possesses a light organ on the abdomen which presumably served a defensive function, documenting a Cretaceous radiation of bioluminescent beetles coinciding with the diversification of major insectivore groups such as frogs and stem-group birds. The discovery adds a key branch to the elateroid tree of life and sheds light on the evolution of soft-bodiedness and the historical biogeography of elateroid beetles.
- Keywords
- Cretaceous Terrestrial Revolution, Elateroidea, biogeography, bioluminescence, fossil,
- MeSH
- Coleoptera * genetics MeSH
- Phylogeny MeSH
- Fireflies MeSH
- Fossils MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Myanmar MeSH
The monospecific family Mysteriomorphidae was recently described based on two fossil specimens from the Late Cretaceous Kachin amber of northern Myanmar. The family was placed in Elateriformia incertae sedis without a clear list of characters that define it either in Elateroidea or in Byrrhoidea. We report here four additional adult specimens of the same lineage, one of which was described using a successful reconstruction from a CT-scan analysis to better observe some characters. The new specimens enabled us to considerably improve the diagnosis of Mysteriomorphidae. The family is definitively placed in Elateroidea, and we hypothesize its close relationship with Elateridae. Similarly, there are other fossil families of beetles that are exclusively described from Cretaceous ambers. These lineages may have been evolutionarily replaced by the ecological revolution launched by angiosperms that introduced new co-associations with taxa. These data indicate a macroevolutionary pattern of replacement that could be extended to other insect groups.
- MeSH
- Biological Evolution MeSH
- Coleoptera anatomy & histology classification MeSH
- Cycadopsida parasitology MeSH
- Host-Parasite Interactions MeSH
- Amber MeSH
- Magnoliopsida parasitology MeSH
- Paleontology methods MeSH
- Tomography, X-Ray Computed MeSH
- Fossils MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Myanmar MeSH
- Names of Substances
- Amber MeSH