Nejvíce citovaný článek - PubMed ID 32016615
Dietary phytochemicals as the potential protectors against carcinogenesis and their role in cancer chemoprevention
INTRODUCTION: Within oncology research, there is a high effort for new approaches to prevent and treat cancer as a life-threatening disease. Specific plant species that adapt to harsh conditions may possess unique properties that may be utilized in the management of cancer. HYPOTHESIS: Chokeberry fruit is rich in secondary metabolites with anti-cancer activities potentially useful in cancer prevention and treatment. AIMS OF THE STUDY AND METHODS: Based on mentioned hypothesis, the main goal of our study was to evaluate the antitumor effects of dietary administered Aronia melanocarpa L. fruit peels (in two concentrations of 0.3 and 3% [w/w]) in the therapeutic syngeneic 4T1 mouse adenocarcinoma model, the chemopreventive model of chemically induced mammary carcinogenesis in rats, a cell antioxidant assay, and robust in vitro analyses using MCF-7 and MDA-MB-231 cancer cells. RESULTS: The dominant metabolites in the A. melanocarpa fruit peel extract tested were phenolic derivatives classified as anthocyanins and procyanidins. In a therapeutic model, aronia significantly reduced the volume of 4T1 tumors at both higher and lower doses. In the same tumors, we noted a significant dose-dependent decrease in the mitotic activity index compared to the control. In the chemopreventive model, the expression of Bax was significantly increased by aronia at both doses. Additionally, aronia decreased Bcl-2 and VEGF levels, increasing the Bax/Bcl-2 ratio compared to the control group. The cytoplasmic expression of caspase-3 was significantly enhanced when aronia was administered at a higher dosage, in contrast to both the control group and the aronia group treated with a lower dosage. Furthermore, the higher dosage of aronia exhibited a significant reduction in the expression of the tumor stem cell marker CD133 compared to the control group. In addition, the examination of aronia`s epigenetic impact on tumor tissue through in vivo analyses revealed significant alterations in histone chemical modifications, specifically H3K4m3 and H3K9m3, miRNAs expression (miR155, miR210, and miR34a) and methylation status of tumor suppressor genes (PTEN and TIMP3). In vitro studies utilizing a methanolic extract of A.melanocarpa demonstrated significant anti-cancer properties in the MCF-7 and MDA-MB-231 cell lines. Various analyses, including Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential, were conducted in this regard. Additionally, the aronia extract enhanced the responsiveness to epirubicin in both cancer cell lines. CONCLUSION: This study is the first to analyze the antitumor effect of A. melanocarpa in selected models of experimental breast carcinoma in vivo and in vitro. The utilization of the antitumor effects of aronia in clinical practice is still minimal and requires precise and long-term clinical evaluations. Individualized cancer-type profiling and patient stratification are crucial for effectively implementing plant nutraceuticals within targeted anti-cancer strategies in clinical oncology.
- Klíčová slova
- Aronia melanocarpa L., breast carcinoma, epigenetics, in vitro models, mechanism of action, rodent models,
- Publikační typ
- časopisecké články MeSH
Significant limitations of the reactive medical approach in breast cancer management are clearly reflected by alarming statistics recorded worldwide. According to the WHO updates, breast malignancies become the leading cancer type. Further, the portion of premenopausal breast cancer cases is permanently increasing and demonstrates particularly aggressive patterns and poor outcomes exemplified by young patients with triple-negative breast cancer that lacks targeted therapy. Accumulating studies suggest the crucial role of stem cells in tumour biology, high metastatic activity, and therapy resistance of aggressive breast cancer. Therefore, targeting breast cancer stem cells is a promising treatment approach in secondary and tertiary breast cancer care. To this end, naturally occurring substances demonstrate high potential to target cancer stem cells which, however, require in-depth analysis to identify effective anti-cancer agents for cost-effective breast cancer management. The current article highlights the properties of flavonoids particularly relevant for targeting breast cancer stem cells to mitigate therapy resistance. The proposed approach is conformed with the principles of 3P medicine by applying predictive diagnostics, patient stratification and treatments tailored to the individualised patient profile. Expected impacts are very high, namely, to overcome limitations of reactive medical services improving individual outcomes and the healthcare economy in breast cancer management. Relevant clinical applications are exemplified in the paper.
- Klíčová slova
- breast cancer, cancer stem cells, non-responsiveness, predictive, preventive and personalised medicine, resistance, secondary and tertiary care,
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
Severe durable changes may occur to the DNA structure caused by exogenous and endogenous risk factors initiating the process of carcinogenesis. By evidence, a large portion of malignancies have been demonstrated as being preventable. Moreover, the targeted prevention of cancer onset is possible, due to unique properties of plant bioactive compounds. Although genoprotective effects of phytochemicals have been well documented, there is an evident lack of articles which would systematically present the spectrum of anticancer effects by phytochemicals, plant extracts, and plant-derived diet applicable to stratified patient groups at the level of targeted primary (cancer development) and secondary (cancer progression and metastatic disease) prevention. Consequently, clinical implementation of knowledge accumulated in the area is still highly restricted. To stimulate coherent co-development of the dedicated plant bioactive compound investigation on one hand and comprehensive cancer preventive strategies on the other hand, the current paper highlights and deeply analyses relevant evidence available in the area. Key molecular mechanisms are presented to detail genoprotective and anticancer activities of plants and phytochemicals. Clinical implementation is discussed. Based on the presented evidence, advanced chemopreventive strategies in the context of 3P medicine are considered.
- Klíčová slova
- Anti-inflammatory, Antibacterial, Anticancer, Antifungal, Antimutagenic effects, Antioxidant, Beneficiary effects, Biomarkers, Breast cancer, Chemoprevention, Colon cancer, Detoxification, Diet, Exogenous and endogenous agents, Genomic instability, Genoprotection, Genotoxicity, Glutaredoxins, Glutathione, Hydrogen peroxide, Nanoparticles, Nanotechnology, Oncology, Oxidative stress, Phytochemicals, Plant natural substances, Prebiotic, Preclinical and clinical study, Predictive Preventive Personalised Medicine (3PM, PPPM), Probiotic, ROS, Scavanger, Superoxide dismutase, Therapeutic potential, Thioredoxin, Tumour,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH