Nejvíce citovaný článek - PubMed ID 32210304
Lactobacillus reuteri 5454 and Bifidobacterium animalis ssp. lactis 5764 improve colitis while differentially impacting dendritic cells maturation and antimicrobial responses
Live biotherapeutic products constitute an emerging therapeutic approach to prevent or treat inflammatory bowel diseases. Lactobacillus acidophilus is a constituent of the human microbiota with probiotic potential, that is illustrated by improvement of intestinal inflammation and antimicrobial activity against several pathogens. In this study, we evaluated the immunomodulatory properties of the L. acidophilus strain BIO5768 at steady state and upon acute inflammation. Supplementation of naïve mice with BIO5768 heightened the transcript level of some IL-17 target genes encoding for protein with microbicidal activity independently of NOD2 signaling. Of these, the BIO5768-induced expression of Angiogenin-4 was blunted in monocolonized mice that are deficient for the receptor of IL-17 (but not for NOD2). Interestingly, priming of bone marrow derived dendritic cells by BIO5768 enhanced their ability to support the secretion of IL-17 by CD4+ T cells. Equally of importance, the production of IL-22 by type 3 innate lymphoid cells is concomitantly heightened in response to BIO5768. When administered alone or in combination with Bifidobacterium animalis spp. lactis BIO5764 and Limosilactobacillus reuteri, BIO5768 was able to alleviate at least partially intestinal inflammation induced by Citrobacter rodentium infection. Furthermore, BIO5768 was also able to improve colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). In conclusion, we identify a new potential probiotic strain for the management of inflammatory bowel diseases, and provide some insights into its IL-17-dependent and independent mode of action.
- MeSH
- Bifidobacterium animalis MeSH
- enterobakteriální infekce terapie MeSH
- idiopatické střevní záněty * terapie MeSH
- interleukin-17 MeSH
- kolitida * chemicky indukované terapie mikrobiologie MeSH
- kyselina trinitrobenzensulfonová škodlivé účinky MeSH
- Lactobacillus acidophilus * MeSH
- lymfocyty MeSH
- myši MeSH
- přirozená imunita * MeSH
- probiotika * farmakologie terapeutické užití MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interleukin-17 MeSH
- kyselina trinitrobenzensulfonová MeSH
Early postnatal events are important for the development of the neonatal immune system. Harboring the pioneering microorganisms forming the microbiota of the neonatal gastrointestinal tract is important for priming the immune system, as well as inducing appropriate tolerance to the relatively innocuous environmental antigens and compounds of normal healthy microbiota. Early postnatal supplementation of suitable, safe probiotics could accelerate this process. In the current study, the immunomodulatory capacity of the probiotic strain of Escherichia coli O83:K24:H31 (EcO83) was characterized in vitro and in vivo. We compared the capacity of EcO83 with and without hemolytic activity on selected immune characteristics in vitro as determined by flow cytometry and quantitative real-time PCR. Both strains with and without hemolytic activity exerted comparable capacity on the maturation of dendritic cells while preserving the induction of interleukin 10 (Il10) expression in dendritic cells and T cells cocultured with EcO83 primed dendritic cells. Early postnatal supplementation with EcO83 led to massive but transient colonization of the neonatal gastrointestinal tract, as detected by in vivo bioimaging. Early postnatal EcO83 administration promoted gut barrier function by increasing the expression of claudin and occludin and the expression of Il10. Early postnatal EcO83 application promotes maturation of the neonatal immune system and promotes immunoregulatory and gut barrier functions.
- Klíčová slova
- E. coli O83:K24:H31, IL-10, dendritic cell, early postnatal probiotic administration, indol amine 2,3 dioxygenase, luciferase, probiotic,
- MeSH
- dendritické buňky MeSH
- Escherichia coli MeSH
- interleukin-10 MeSH
- lidé MeSH
- mikrobiota * MeSH
- novorozenec MeSH
- probiotika * farmakologie MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interleukin-10 MeSH
INTRODUCTION: Probiotic administration seems to be a rational approach to promote maturation of the neonatal immune system. Mutual interaction of the microbiota with the host immune system is critical for the setting of appropriate immune responses including a tolerogenic one and thevmaintenance of homeostasis. On the other hand, our knowledge on the modes of actions of probiotics is still scarce. METHODS: In our study, probiotic strain Escherichia coli O83:K24:H31 (EcO83) was administered to neonates of allergic mothers (AMs; neonates with increased risk for allergy development) within 48 h after the delivery, and the impact of this early postnatal supplementation on allergy incidence and selected immune markers has been analyzed 10 years after the primary EcO83 administration. RESULTS: We have observed decreased allergy incidence in 10-year-old children supplemented with EcO83 (13 of 52 children were allergic) in comparison with non-supplemented children of AMs (16 of 42 children were allergic). The early postnatal EcO83 supplementation appeared to limit the allergy in the high-risk group (children of AMs) compared to that in the low-risk group (children of healthy mothers). Dendritic cells (DCs) in the peripheral blood of EcO83-supplemented children do not differ significantly in cell surface presence of CD83. The immunomodulatory capacity of EcO83 on DCs was tested in vitro as well. Both directly isolated myeloid and in vitro monocyte-derived DCs from cord blood increased CD83 expression together with interleukin (IL)-10 secretion after EcO83 stimulation. The effect of early postnatal EcO83 supplementation on the microbiota composition of 10-year-old children was characterized by next-generation sequencing, and we have not observed significant changes in the microbiota composition of EcO83-supplemented and non-supplemented children at the age of 10 years. CONCLUSIONS: Early postnatal EcO83 supplementation appears to lower allergy incidence in children of AMs. It seems that the beneficial effect of EcO83 is mediated via modulation of DC functional capacities without impacting the microbiota composition. Larger-scale studies will be necessary to confirm these preliminary findings.
- Klíčová slova
- CD83, Escherichia coli O83:K24:H31, IL-10, allergy, cord blood, dendritic cell, flow cytometry, probiotic,
- MeSH
- alergie * epidemiologie prevence a kontrola MeSH
- dendritické buňky MeSH
- dítě MeSH
- Escherichia coli fyziologie MeSH
- incidence MeSH
- lidé MeSH
- mikrobiota * MeSH
- monocyty MeSH
- novorozenec MeSH
- probiotika * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this review, we link ecological adaptations of different gut microbiota members with their potential for use as a new generation of probiotics. Gut microbiota members differ in their adaptations to survival in aerobic environments. Interestingly, there is an inverse relationship between aerobic survival and abundance or potential for prolonged colonization of the intestinal tract. Facultative anaerobes, aerotolerant Lactobacilli and endospore-forming Firmicutes exhibit high fluctuation, and if such bacteria are to be used as probiotics, they must be continuously administered to mimic their permanent supply from the environment. On the other hand, species not expressing any form of aerobic resistance, such as those from phylum Bacteroidetes, commonly represent host-adapted microbiota members characterized by vertical transmission from mothers to offspring, capable of long-term colonization following a single dose administration. To achieve maximal probiotic efficacy, the mode of their administration should thus reflect their natural ecology.
- Klíčová slova
- chicken, gut, human, microbiota, pig, probiotics,
- MeSH
- biologická adaptace fyziologie MeSH
- Lactobacillus fyziologie MeSH
- lidé MeSH
- probiotika farmakologie terapeutické užití MeSH
- střevní mikroflóra fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Alterations in the gut microbiota composition and diversity seem to play a role in the development of chronic diseases, including inflammatory bowel disease (IBD), leading to gut barrier disruption and induction of proinflammatory immune responses. This opens the door for the use of novel health-promoting bacteria. We selected five Parabacteroides distasonis strains isolated from human adult and neonates gut microbiota. We evaluated in vitro their immunomodulation capacities and their ability to reinforce the gut barrier and characterized in vivo their protective effects in an acute murine model of colitis. The in vitro beneficial activities were highly strain dependent: two strains exhibited a potent anti-inflammatory potential and restored the gut barrier while a third strain reinstated the epithelial barrier. While their survival to in vitro gastric conditions was variable, the levels of P. distasonis DNA were higher in the stools of bacteria-treated animals. The strains that were positively scored in vitro displayed a strong ability to rescue mice from colitis. We further showed that two strains primed dendritic cells to induce regulatory T lymphocytes from naïve CD4+ T cells. This study provides better insights on the functionality of commensal bacteria and crucial clues to design live biotherapeutics able to target inflammatory chronic diseases such as IBD.
- Klíčová slova
- IBD, colitis, functional screening, holobiont, immune response, live biotherapeutic products (LBP), microbiota, probiotics,
- MeSH
- Bacteroidetes genetika imunologie izolace a purifikace MeSH
- Caco-2 buňky MeSH
- DNA bakterií genetika metabolismus MeSH
- dospělí MeSH
- feces mikrobiologie MeSH
- idiopatické střevní záněty imunologie mikrobiologie MeSH
- kolitida chemicky indukované imunologie mikrobiologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- kyselina trinitrobenzensulfonová škodlivé účinky MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- novorozenec MeSH
- regulační T-lymfocyty imunologie MeSH
- střevní mikroflóra imunologie MeSH
- střevní sliznice imunologie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- myši MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA bakterií MeSH
- kyselina trinitrobenzensulfonová MeSH