Most cited article - PubMed ID 32230733
Combined Pre- and Posttreatment of Paraoxon Exposure
Organophosphate neuroactive agents represent severe security threats in various scenarios, including military conflicts, terrorist activities and industrial accidents. Addressing these threats necessitates effective protective measures, with a focus on decontamination strategies. Adsorbents such as bentonite have been explored as a preliminary method for chemical warfare agent immobilization, albeit lacking chemical destruction capabilities. Chemical decontamination, on the other hand, involves converting these agents into non-toxic or less toxic forms. In this study, we investigated the hydrolytic activity of a Cu(II) complex, previously studied for phosphate ester hydrolysis, as a potential agent for chemical warfare decontamination. Specifically, we focused on a ligand featuring a thiophene anchor bound through an aliphatic spacer, which exhibited high hydrolytic activity in its Cu(II) complex form in our previous studies. Paraoxon, an efficient insecticide, was selected as a model substrate for hydrolytic studies due to its structural resemblance to specific chemical warfare agents and due to the presence of a chromogenic 4-nitrophenolate moiety. Our findings clearly show the hydrolytic activity of the studied Cu(II) complexes. Additionally, we demonstrate the immobilization of the studied complex onto a solid substrate of Amberlite XAD4 via copolymerization of its thiophene side group with dithiophene. The hydrolytic activity of the resultant material towards paraoxon was studied, indicating its potential utilization in organophosphate neuroactive agent decontamination under mild conditions and the key importance of surface adsorption of paraoxon on the polymer surface.
- Keywords
- catalysis, hydrolysis, macrocyclic copper complexes, nerve agents, paraoxon, thiophene polymers,
- Publication type
- Journal Article MeSH
Poisoning with organophosphorus compounds (OPCs) represents an ongoing threat to civilians and rescue personal. We have previously shown that oximes, when administered prophylactically before exposure to the OPC paraoxon, are able to protect from its toxic effects. In the present study, we have assessed to what degree experimental (K-27; K-48; K-53; K-74; K-75) or established oximes (pralidoxime, obidoxime), when given as pretreatment at an equitoxic dosage of 25% of LD01, are able to reduce mortality induced by the OPC azinphos-methyl. Their efficacy was compared with that of pyridostigmine, the only FDA-approved substance for such prophylaxis. Efficacy was quantified in rats by Cox analysis, calculating the relative risk of death (RR), with RR=1 for the reference group given only azinphos-methyl, but no prophylaxis. All tested compounds significantly (p ≤ 0.05) reduced azinphos-methyl-induced mortality. In addition, the efficacy of all tested experimental and established oximes except K-53 was significantly superior to the FDA-approved compound pyridostigmine. Best protection was observed for the oximes K-48 (RR = 0.20), K-27 (RR = 0.23), and obidoxime (RR = 0.21), which were significantly more efficacious than pralidoxime and pyridostigmine. The second-best group of prophylactic compounds consisted of K-74 (RR = 0.26), K-75 (RR = 0.35) and pralidoxime (RR = 0.37), which were significantly more efficacious than pyridostigmine. Pretreatment with K-53 (RR = 0.37) and pyridostigmine (RR = 0.52) was the least efficacious. Our present data, together with previous results on other OPCs, indicate that the experimental oximes K-27 and K-48 are very promising pretreatment compounds. When penetration into the brain is undesirable, obidoxime is the most efficacious prophylactic agent already approved for clinical use.
- Keywords
- Cox analysis, acetylcholine, azinphos-methyl, carbamates, cholinesterase, obidoxime, organophosphate, pesticide, pralidoxime, prophylaxis, rat,
- MeSH
- Survival Analysis MeSH
- Azinphosmethyl chemistry toxicity MeSH
- Cholinesterase Inhibitors pharmacology MeSH
- Inhibitory Concentration 50 MeSH
- Rats MeSH
- Molecular Weight MeSH
- Organophosphorus Compounds chemistry toxicity MeSH
- Oximes pharmacology MeSH
- Pesticides chemistry toxicity MeSH
- Rats, Wistar MeSH
- Proportional Hazards Models MeSH
- Risk MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Azinphosmethyl MeSH
- Cholinesterase Inhibitors MeSH
- Organophosphorus Compounds MeSH
- Oximes MeSH
- Pesticides MeSH
BACKGROUND: Oximes are used in addition to atropine to treat organophosphate poisoning. However, the efficiency of oximes is still a matter of debate. In vitro experiments suggested than new oximes are more potent than the commercial oximes. However, the antidotal activity of new oximes has not been assessed in vivo. METHODS: The aim of this work was to assess the safety and efficiency of new oximes compared to pralidoxime in a rat model of diethyl paraoxon-induced non-lethal respiratory toxicity. RESULTS: Safety study of oximes showed no adverse effects on ventilation in rats. KO-33, KO-48, KO-74 oximes did not exhibit significant antidotal effect in vivo. In contrast, KO-27 and BI-6 showed evidence of antidotal activity by normalization of respiratory frequency and respiratory times. KO-27 became inefficient only during the last 30 min of the study. In contrast, pralidoxime demonstrated to be inefficient at 30 min post injection. Inversely, the antidotal activity of BI-6 occurred lately, within the last 90 min post injection. CONCLUSION: This study showed respiratory safety of new oximes. Regarding, the efficiency, KO-27 revealed to be a rapid acting antidote toward diethylparaoxon-induced respiratory toxicity, meanwhile BI-6 was a late-acting antidote. Simultaneous administration of these two oximes might result in a complete and prolonged antidotal efficiency.
- Keywords
- BI-6, KO-27, diethyl-paraoxon, oximes, plethysmography, pralidoxime, rats, ventilatory effects,
- MeSH
- Antidotes pharmacology MeSH
- Safety MeSH
- Cholinesterase Inhibitors toxicity MeSH
- Respiration drug effects MeSH
- Rats MeSH
- Organophosphate Poisoning drug therapy etiology MeSH
- Oximes pharmacology MeSH
- Paraoxon toxicity MeSH
- Rats, Sprague-Dawley MeSH
- Ventilation methods MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antidotes MeSH
- Cholinesterase Inhibitors MeSH
- Oximes MeSH
- Paraoxon MeSH