Most cited article - PubMed ID 32259051
Effect of static magnetic field on DNA synthesis: The interplay between DNA chirality and magnetic field left-right asymmetry
We explore the potential of using magnetic cues as a novel approach to modulating ion channel expression, which could provide an alternative to traditional pharmacological interventions. Ion channels are crucial targets for pharmacological therapies, and ongoing research in this field continues to introduce new methods for treating various diseases. However, the efficacy of ion channel drugs is often compromised by issues such as target selectivity, leading to side effects, toxicity, and complex drug interactions. These challenges, along with problems like drug resistance and difficulties in crossing biological barriers, highlight the need for innovative strategies. In this context, the proposed use of magnetic cues to modulate ion channel expression may offer a promising solution to address these limitations, potentially improving the safety and effectiveness of treatments, particularly for long-term use. Key developments in this area are reviewed, the relationships between changes in ion channel expression and magnetic fields are summarized, knowledge gaps are identified, and central issues relevant to future research are discussed.
- Keywords
- cell membrane, ion channel drug, ion channels, magnetic cues, magnetic field, magnetic nanoparticles,
- MeSH
- Ion Channels * metabolism MeSH
- Humans MeSH
- Magnetic Fields * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Ion Channels * MeSH
The diffusion of biologically active molecules is a ubiquitous process, controlling many mechanisms and the characteristic time scales for pivotal processes in living cells. Here, we show how a high static magnetic field (MF) affects the diffusion of paramagnetic and diamagnetic species including oxygen, hemoglobin, and drugs. We derive and solve the equation describing diffusion of such biologically active molecules in the presence of an MF as well as reveal the underlying mechanism of the MF's effect on diffusion. We found that a high MF accelerates diffusion of diamagnetic species while slowing the diffusion of paramagnetic molecules in cell cytoplasm. When applied to oxygen and hemoglobin diffusion in red blood cells, our results suggest that an MF may significantly alter the gas exchange in an erythrocyte and cause swelling. Our prediction that the diffusion rate and characteristic time can be controlled by an MF opens new avenues for experimental studies foreseeing numerous biomedical applications.
- Keywords
- drug diffusion, hemoglobin, magnetic field, molecular diffusion, red blood cells,
- MeSH
- Diffusion MeSH
- Erythrocytes metabolism MeSH
- Hemoglobins metabolism MeSH
- Oxygen metabolism MeSH
- Pharmaceutical Preparations metabolism MeSH
- Magnetic Fields * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Hemoglobins MeSH
- Oxygen MeSH
- Pharmaceutical Preparations MeSH
Studies have shown that 9.4 Tesla (9.4 T) high-field magnetic resonance imaging (MRI) has obvious advantages in improving image resolution and capacity, but their safety issues need to be further validated before their clinical approval. Meanwhile, emerging experimental evidences show that moderate to high intensity Static Magnetic Fields (SMFs) have some anti-cancer effects. We examined the effects of two opposite SMF directions on lung cancer bearing mice and found when the lung cancer cell-bearing mice were treated with 9.4 T SMFs for 88 h in total, the upward 9.4 T SMF significantly inhibited A549 tumor growth (tumor growth inhibition=41%), but not the downward 9.4 T SMF. In vitro cellular analysis shows that 9.4 T upward SMF treatment for 24 h not only inhibited A549 DNA synthesis, but also significantly increased ROS and P53 levels, and arrested G2 cell cycle. Moreover, the 9.4 T SMF-treatments for 88 h had no severe impairment to the key organs or blood cell count of the mice. Our findings demonstrated the safety of 9.4 T SMF long-term exposure for their future applications in MRI, and revealed the anti-cancer potential of the upward direction 9.4 T SMF.
- Keywords
- 9.4 T static magnetic field (SMF), Cell cycle, Lung cancer, P53, ROS,
- Publication type
- Journal Article MeSH