Most cited article - PubMed ID 32408543
Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis
A new group of potent histone deacetylase inhibitors (HDACis) capable of inhibiting cell growth and affecting cell-cycle progression in Tohoku Hospital Pediatrics-1 (THP-1) monocytic leukaemia cells was synthesized. The inhibitors belong to a series of hydroxamic acid derivatives. We designed and synthesized a series of 22 N-hydroxycinnamamide derivatives, out of which 20 are new compounds. These compounds contain various substituted anilides as the surface recognition moiety (SRM), a p-hydroxycinnamate linker, and hydroxamic acids as the zinc-binding group (ZBG). The whole series of synthesized hydroxamic acids inhibited THP-1 cell proliferation. Compounds 7d and 7p, which belong to the category of derivatives with the most potent antiproliferative properties, exert a similar effect on cell-cycle progression as vorinostat and induce apoptosis in THP-1 cells. Furthermore, compounds 7d and 7p were demonstrated to inhibit HDAC class I and II in THP-1 cells with comparable potency to vorinostat and increase acetylation of histones H2a, H2b, H3, and H4. Molecular modelling was used to predict the probable binding mode of the studied HDACis in class I and II histone deacetylases in terms of Zn2+ ion chelation by the hydroxamate group.
- Keywords
- HDACi, anticancer agents, haematological malignancies, hydroxamic acid, inhibitors of histone deacetylases,
- MeSH
- Apoptosis * drug effects MeSH
- Cell Cycle drug effects MeSH
- Histone Deacetylases metabolism MeSH
- Histone Deacetylase Inhibitors * pharmacology chemical synthesis chemistry MeSH
- Hydroxamic Acids * pharmacology chemical synthesis chemistry MeSH
- Coumaric Acids * pharmacology chemistry chemical synthesis MeSH
- Humans MeSH
- Molecular Structure MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents * pharmacology chemical synthesis chemistry MeSH
- Drug Screening Assays, Antitumor MeSH
- Molecular Docking Simulation MeSH
- THP-1 Cells MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Histone Deacetylases MeSH
- Histone Deacetylase Inhibitors * MeSH
- Hydroxamic Acids * MeSH
- Coumaric Acids * MeSH
- Antineoplastic Agents * MeSH
BACKGROUND AND PURPOSE: New compounds and innovative therapeutic approaches are trying to prevent antimicrobial resistance, which has become a global health challenge. EXPERIMENTAL APPROACH: This study includes a series of twelve mono-, di- and trichlorinated 1-hydroxynaphthalene-2-carboxanilides designed as multitarget agents. All compounds were evaluated for their antistaphylococcal activity. Furthermore, MTT assay and chemoproteomic analysis of selected compounds were performed. Cytotoxicity in human cells was also tested. KEY RESULTS: N-(3,5-Dichlorophenyl)-1-hydroxynaphthalene-2-carboxamide (10) demonstrated activity comparable to or higher than clinically used drugs, with minimum inhibitory concentrations (MICs) of 0.37 μM. The compound was equally effective against clinical isolates of methicillin-resistant S. aureus. On the other hand, compound 10 showed 96 % inhibition of S. aureus respiration only at a concentration of 16× MIC. Chemoproteomic analysis revealed that the effect of agent 10 on staphylococci resulted in the downregulation of four proteins. This compound expressed no in vitro cytotoxicity up to a concentration of 30 μM. CONCLUSION: From the set of tested mono-, di- and trisubstituted derivatives, it is evident that the position of chlorine atoms is decisive for significant antistaphylococcal activity. Inhibition of energy metabolism does not appear to be one of the main mechanisms of action of compound 10; on the contrary, the antibacterial effect may likely be contributed by downregulation of proteins (especially ATP-dependent protease ATPase subunit HslU) involved in processes essential for bacterial survival and growth, such as protein, nucleotide/nucleic acid synthesis and efficient protein repair/degradation.
- Keywords
- Lipophilicity, MTT assay, antistaphylococcal activity, chemoproteomic analysis, cytotoxicity,
- Publication type
- Journal Article MeSH
Salicylanilides are pharmacologically active compounds with a wide spectrum of biological effects. Halogenated salicylanilides, which have been used for decades in human and veterinary medicine as anthelmintics, have recently emerged as candidates for drug repurposing in oncology. The most prominent example of salicylanilide anthelmintic, that is intensively studied for its potential anticancer properties, is niclosamide. Nevertheless, recent studies have discovered extensive anticancer potential in a number of other salicylanilides. This potential of their anticancer action is mediated most likely by diverse mechanisms of action such as uncoupling of oxidative phosphorylation, inhibition of protein tyrosine kinase epidermal growth factor receptor, modulation of different signaling pathways as Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways or induction of B-Raf V600E inhibition. Here we provide a comprehensive overview of the current knowledge about the proposed mechanisms of action of anticancer activity of salicylanilides based on preclinical in vitro and in vivo studies, or structural requirements for such an activity.
- Keywords
- STAT3, TK EGFR, anticancer properties, drug repurposing, mitochondrial uncoupling, niclosamide, salicylanilides,
- MeSH
- Anthelmintics * pharmacology MeSH
- Humans MeSH
- Niclosamide pharmacology MeSH
- Salicylanilides * pharmacology chemistry MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anthelmintics * MeSH
- Niclosamide MeSH
- Salicylanilides * MeSH
The superimposition of the X-ray complexes of cyclohexanediones (i.e., TUB015), described by our research group, and nocodazole, within the colchicine binding site of tubulin provided an almost perfect overlap of both ligands. This structural information led us to propose hybrids of TUB015 and nocodazole using a salicylanilide core structure. Interestingly, salicylanilides, such as niclosamide, are well-established signal transducers and activators of transcription (STAT3) inhibitors with anticancer properties. Thus, different compounds with this new scaffold have been synthesized with the aim to identify compounds inhibiting tubulin polymerization and/or STAT3 signaling. As a result, we have identified new salicylanilides (6 and 16) that showed significant antiproliferative activity against a panel of cancer cells. Both compounds were able to reduce the levels of p-STAT3Tyr705 without affecting the total expression of STAT3. While compound 6 inhibited tubulin polymerization and arrested the cell cycle of DU145 cells at G2/M, similar to TUB015, compound 16 showed a more potent effect on inhibiting STAT3 phosphorylation and arrested the cell cycle at G1/G0, similar to niclosamide. In both cases, no toxicity towards PBMC cells was detected. Thus, the salicylanilides described here represent a new class of antiproliferative agents affecting tubulin polymerization and/or STAT3 phosphorylation.
A series of twenty-two novel N-(disubstituted-phenyl)-3-hydroxynaphthalene- 2-carboxamide derivatives was synthesized and characterized as potential antimicrobial agents. N-[3,5-bis(trifluoromethyl)phenyl]- and N-[2-chloro-5-(trifluoromethyl)phenyl]-3-hydroxy- naphthalene-2-carboxamide showed submicromolar (MICs 0.16-0.68 µM) activity against methicillin-resistant Staphylococcus aureus isolates. N-[3,5-bis(trifluoromethyl)phenyl]- and N-[4-bromo-3-(trifluoromethyl)phenyl]-3-hydroxynaphthalene-2-carboxamide revealed activity against M. tuberculosis (both MICs 10 µM) comparable with that of rifampicin. Synergistic activity was observed for the combinations of ciprofloxacin with N-[4-bromo-3-(trifluoromethyl)phenyl]- and N-(4-bromo-3-fluorophenyl)-3-hydroxynaphthalene-2-carboxamides against MRSA SA 630 isolate. The similarity-related property space assessment for the congeneric series of structurally related carboxamide derivatives was performed using the principal component analysis. Interestingly, different distribution of mono-halogenated carboxamide derivatives with the -CF3 substituent is accompanied by the increased activity profile. A symmetric matrix of Tanimoto coefficients indicated the structural dissimilarities of dichloro- and dimetoxy-substituted isomers from the remaining ones. Moreover, the quantitative sampling of similarity-related activity landscape provided a subtle picture of favorable and disallowed structural modifications that are valid for determining activity cliffs. Finally, the advanced method of neural network quantitative SAR was engaged to illustrate the key 3D steric/electronic/lipophilic features of the ligand-site composition by the systematic probing of the functional group.
- Keywords
- CoMSA, IVE-PLS, MIC, MTT assay, antistaphylococcal activity, antitubercular activity, hydroxynaphthalenecarboxamides, lipophilicity, similarity-activity landscape index,
- MeSH
- Anti-Infective Agents chemical synthesis MeSH
- Methicillin-Resistant Staphylococcus aureus * MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium tuberculosis * MeSH
- Naphthalenes chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Infective Agents MeSH
- Naphthalenes MeSH
- naphthalene-2-carboxamide MeSH Browser