Most cited article - PubMed ID 32414239
Psi4 1.4: Open-source software for high-throughput quantum chemistry
Previously studied complexes with protonic and hydridic hydrogen bonds exhibit significant similarities. The present study provides a detailed investigation of the structure, stabilization, electronic properties, and spectral characteristics of protonic and hydridic hydrogen bonds using low-temperature infrared (IR) spectroscopy and computational methods. Complexes of pentafluorobenzene with ammonia (C₆F₅H⋯NH₃) and triethylgermane with trifluoroiodomethane (Et₃GeH⋯ICF₃) were analyzed using both experimental and computational tools. Additionally, 30 complexes with protonic hydrogen bonds and 30 complexes with hydridic hydrogen bonds were studied computationally. Our findings reveal that, despite the opposite atomic charges on the hydrogens in these hydrogen bonds, and consequently the opposite directions of electron transfer in protonic and hydridic hydrogen bonds, their spectral manifestations - specifically, the red shifts in the X-H stretching frequency and the increase in intensity - are remarkably similar. The study also discusses the limitations of the current IUPAC definition of hydrogen bonding in covering both types of H-bonds and suggests a way to overcome these limitations.
- Publication type
- Journal Article MeSH
Molecular electronics promises the ultimate level of miniaturization of computers and other machines as organic molecules are the smallest known physical objects with nontrivial structure and function. But despite the plethora of molecular switches, memories, and motors developed during the almost 50-years long history of molecular electronics, mass production of molecular computers is still an elusive goal. This is mostly due to the lack of scalable nanofabrication methods capable of rapidly producing complex structures (similar to silicon chips or living cells) with atomic precision and a small number of defects. Living nature solves this problem by using linear polymer templates encoding large volumes of structural information into sequence of hydrogen bonded end groups which can be efficiently replicated and which can drive assembly of other molecular components into complex supramolecular structures. In this paper, we propose a nanofabrication method based on a class of photosensitive polymers inspired by these natural principles, which can operate in concert with UV photolithography used for fabrication of current microelectronic processors. We believe that such a method will enable a smooth transition from silicon toward molecular nanoelectronics and photonics. To demonstrate its feasibility, we performed a computational screening of candidate molecules that can selectively bind and therefore allow the deterministic assembly of molecular components. In the process, we unearthed trends and design principles applicable beyond the immediate scope of our proposed nanofabrication method, e.g., to biologically relevant DNA analogues and molecular recognition within hydrogen-bonded systems.
- Keywords
- DNA analogue, ab initio calculations, computational screening, hydrogen bonded system, molecular electronics, nanofabrication, self-assembly,
- Publication type
- Journal Article MeSH
In extreme ultraviolet spectroscopy, the photoionization process occurring in a molecule due to the absorption of a single photon can trigger an ultrafast nuclear motion in the cation. Taking advantage of attosecond photoelectron interferometry, where the absorption of the extreme ultraviolet photon is accompanied by the exchange of an additional infrared quantum of light, one can investigate the influence of nuclear dynamics by monitoring the characteristics of the photoelectron spectra generated by the two-color field. Here, we show that attosecond photoelectron interferometry is sensitive to the nuclear response by measuring the two-color photoionization spectra in a mixture of methane (CH4) and deuteromethane (CD4). The effect of the different nuclear evolution in the two isotopologues manifests itself in the modification of the amplitude and contrast of the oscillations of the photoelectron peaks. Our work indicates that nuclear dynamics can affect the coherence properties of the electronic wave packet emitted by photoionization on a time scale as short as a few femtoseconds.
- Publication type
- Journal Article MeSH
Submolecular charge distribution significantly affects the physical-chemical properties of molecules and their mutual interaction. One example is the presence of a π-electron-deficient cavity in halogen-substituted polyaromatic hydrocarbon compounds, the so-called π-holes, the existence of which was predicted theoretically, but the direct experimental observation is still missing. Here we present the resolution of the π-hole on a single molecule using the Kelvin probe force microscopy, which supports the theoretical prediction of its existence. In addition, experimental measurements supported by theoretical calculations show the importance of π-holes in the process of adsorption of molecules on solid-state surfaces. This study expands our understanding of the π-hole systems and, at the same time, opens up possibilities for studying the influence of submolecular charge distribution on the chemical properties of molecules and their mutual interaction.
- Publication type
- Journal Article MeSH
Community efforts in the computational molecular sciences (CMS) are evolving toward modular, open, and interoperable interfaces that work with existing community codes to provide more functionality and composability than could be achieved with a single program. The Quantum Chemistry Common Driver and Databases (QCDB) project provides such capability through an application programming interface (API) that facilitates interoperability across multiple quantum chemistry software packages. In tandem with the Molecular Sciences Software Institute and their Quantum Chemistry Archive ecosystem, the unique functionalities of several CMS programs are integrated, including CFOUR, GAMESS, NWChem, OpenMM, Psi4, Qcore, TeraChem, and Turbomole, to provide common computational functions, i.e., energy, gradient, and Hessian computations as well as molecular properties such as atomic charges and vibrational frequency analysis. Both standard users and power users benefit from adopting these APIs as they lower the language barrier of input styles and enable a standard layout of variables and data. These designs allow end-to-end interoperable programming of complex computations and provide best practices options by default.
- Publication type
- Journal Article MeSH
We formulate a computationally efficient time-independent method based on the multi-electron molecular R-matrix formalism. This method is used to calculate transition matrix elements for the multi-photon ionization of atoms and molecules under the influence of a perturbative field. The method relies on the partitioning of space which allows us to calculate the infinite-range free-free dipole integrals analytically in the outer region, beyond the range of the initial bound wave function. This approach is valid for an arbitrary order, that is, any number of photons absorbed both in the bound and the continuum part of the spectrum (below- and above-threshold ionization). We calculate generalized multi-photon cross sections and angular distributions of different systems (H, He, [Formula: see text], [Formula: see text]) and validate our approach by comparison with data from the literature.
- Publication type
- Journal Article MeSH