Nejvíce citovaný článek - PubMed ID 32522540
Transglycosidase activity of glycosynthase-type mutants of a fungal GH20 β-N-acetylhexosaminidase
Here we describe a complex enzymatic approach to the efficient transformation of abundant waste chitin, a byproduct of the food industry, into valuable chitooligomers with a degree of polymerization (DP) ranging from 6 to 11. This method involves a three-step process: initial hydrolysis of chitin using engineered variants of a novel fungal chitinase from Talaromyces flavus to generate low-DP chitooligomers, followed by an extension to the desired DP using the high-yielding Y445N variant of β-N-acetylhexosaminidase from Aspergillus oryzae, achieving yields of up to 57%. Subsequently, enzymatic deacetylation of chitooligomers with DP 6 and 7 was accomplished using peptidoglycan deacetylase from Bacillus subtilis BsPdaC. The innovative enzymatic procedure demonstrates a sustainable and feasible route for converting waste chitin into unavailable bioactive chitooligomers potentially applicable as natural pesticides in ecological and sustainable agriculture.
- Klíčová slova
- chitin, chitinase, chitooligomer, peptidoglycan deacetylase, β-N-acetylhexosaminidase,
- MeSH
- Aspergillus oryzae * enzymologie genetika metabolismus MeSH
- Bacillus subtilis genetika enzymologie chemie metabolismus MeSH
- bakteriální proteiny genetika metabolismus chemie MeSH
- biokatalýza MeSH
- chitin * metabolismus chemie MeSH
- chitinasy * metabolismus genetika chemie MeSH
- fungální proteiny * metabolismus genetika chemie MeSH
- hydrolýza MeSH
- oligosacharidy * metabolismus chemie MeSH
- Talaromyces * enzymologie genetika chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- chitin * MeSH
- chitinasy * MeSH
- fungální proteiny * MeSH
- oligosacharidy * MeSH
β-N-Acetylhexosaminidase from Talaromyces flavus (TfHex; EC 3.2.1.52) is an exo-glycosidase with dual activity for cleaving N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) units from carbohydrates. By targeting a mutation hotspot of the active site residue Glu332, we prepared a library of ten mutant variants with their substrate specificity significantly shifted towards GlcNAcase activity. Suitable mutations were identified by in silico methods. We optimized a microtiter plate screening method in the yeast Pichia pastoris expression system, which is required for the correct folding of tetrameric fungal β-N-acetylhexosaminidases. While the wild-type TfHex is promiscuous with its GalNAcase/GlcNAcase activity ratio of 1.2, the best single mutant variant Glu332His featured an 8-fold increase in selectivity toward GlcNAc compared with the wild-type. Several prepared variants, in particular Glu332Thr TfHex, had significantly stronger transglycosylation capabilities than the wild-type, affording longer chitooligomers - they behaved like transglycosidases. This study demonstrates the potential of mutagenesis to alter the substrate specificity of glycosidases.
- Klíčová slova
- Pichia pastoris, Talaromyces flavus, site-directed mutagenesis, site-saturation mutagenesis, substrate specificity, β-N-acetylhexosaminidase,
- MeSH
- acetylgalaktosamin metabolismus MeSH
- acetylglukosamin * metabolismus MeSH
- acetylglukosaminidasa MeSH
- beta-N-acetylhexosaminidasy * metabolismus MeSH
- kinetika MeSH
- mutace MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylgalaktosamin MeSH
- acetylglukosamin * MeSH
- acetylglukosaminidasa MeSH
- beta-N-acetylhexosaminidasy * MeSH