Most cited article - PubMed ID 32699397
Current European flood-rich period exceptional compared with past 500 years
STUDY REGION: The Morava River basin, Czech Republic, Danube Basin, Central Europe. STUDY FOCUS: Hydrological summer extremes represent a prominent natural hazard in Central Europe. River low flows constrain transport and water supply for agriculture, industry and society, and flood events are known to cause material damage and human loss. However, understanding changes in the frequency and magnitude of hydrological extremes is associated with great uncertainty due to the limited number of gauge observations. Here, we compile a tree-ring network to reconstruct the July-September baseflow variability of the Morava River from 1745 to 2018 CE. An ensemble of reconstructions was produced to assess the impact of calibration period length and trend on the long-term mean of reconstruction estimates. The final estimates represent the first baseflow reconstruction based on tree rings from the European continent. Simulated flows and historical documentation provide quantitative and qualitative validation of estimates prior to the 20th century. NEW HYDROLOGICAL INSIGHTS FOR THE REGION: The reconstructions indicate an increased variability of warm-season flow during the past 100 years, with the most extreme high and low flows occurring after the start of instrumental observations. When analyzing the entire reconstruction, the negative trend in baseflow displayed by gauges across the basin after 1960 is not unprecedented. We conjecture that even lower flows could likely occur in the future considering that pre-instrumental trends were not primarily driven by rising temperature (and the evaporative demand) in contrast to the recent trends.
- Keywords
- Baseflow, Extremes, Morava, Reconstruction, Tree rings,
- Publication type
- Journal Article MeSH
The white truffle (Tuber magnatum Picco.; WT) is the most expensive and arguably also the most delicious species within the genus Tuber. Due to its hidden belowground life cycle, complex host symbiosis, and yet unknown distribution, cultivation of the enigmatic species has only recently been achieved at some plantations in France. A sustainable production of WTs under future climate change, however, requires a better ecological understanding of the species' natural occurrence. Here, we combine information from truffle hunters with a literature review to assess the climatic, edaphic, geographic, and symbiotic characteristics of 231 reported WT sites in southeast Europe. Our meta-study shows that 75% of the WT sites are located outside the species' most famous harvest region, the Piedmont in northern Italy. Spanning a wide geographic range from ~ 37° N in Sicily to ~ 47° N in Hungary, and elevations between sea level in the north and 1000 m asl in the south, all WT sites are characterised by mean winter temperatures > 0.4 °C and summer precipitation totals of ~ 50 mm. Often formed during past flood or landslide events, current soil conditions of the WT sites exhibit pH levels between 6.4 and 8.7, high macroporosity, and a cation exchange capacity of ~ 17 meq/100 g. At least 26 potential host species from 12 genera were reported at the WT sites, with Populus alba and Quercus cerris accounting for 23.5% of all plant species. We expect our findings to contribute to a sustainable WT industry under changing environmental and economic conditions.
- Keywords
- Ectomycorrhiza, Environmental change, Fungi, Global warming, Non-woody forest products, Truffle cultivation,
- MeSH
- Ascomycota * MeSH
- Mycorrhizae * MeSH
- Soil MeSH
- Symbiosis MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Soil MeSH
Anomalies in the frequency of river floods, i.e., flood-rich or -poor periods, cause biases in flood risk estimates and thus make climate adaptation measures less efficient. While observations have recently confirmed the presence of flood anomalies in Europe, their exact causes are not clear. Here we analyse streamflow and climate observations during 1960-2010 to show that shifts in flood generation processes contribute more to the occurrence of regional flood anomalies than changes in extreme rainfall. A shift from rain on dry soil to rain on wet soil events by 5% increased the frequency of flood-rich periods in the Atlantic region, and an opposite shift in the Mediterranean region increased the frequency of flood-poor periods, but will likely make singular extreme floods occur more often. Flood anomalies driven by changing flood generation processes in Europe may further intensify in a warming climate and should be considered in flood estimation and management.
- Keywords
- Hydrology, Natural hazards,
- Publication type
- Journal Article MeSH