Most cited article - PubMed ID 32735429
The Influence of Movement Tempo on Acute Neuromuscular, Hormonal, and Mechanical Responses to Resistance Exercise-A Mini Review
OpenAI's Chat Generative Pre-trained Transformer (ChatGPT) technology enables conversational interactions with applications across various fields, including sport. Here, ChatGPT's proficiency in designing a 12-week resistance training programme, following specific prompts, was investigated. GPT3.5 and GPT4.0 versions were requested to design 12-week resistance training programmes for male and female hypothetical subjects (20-years-old, no injury, and 'intermediate' resistance training experience). Subsequently, GPT4.0 was requested to design an 'advanced' training programme for the same profiles. The proposed training programmes were compared with established guidelines and literature (e.g., National Strength and Conditioning Association textbook), and discussed. ChatGPT suggested 12-week training programmes comprising three, 4-week phases, each with different objectives (e.g., hypertrophy/strength). GPT3.5 proposed a weekly frequency of ~3 sessions, load intensity of 70-85% of one repetition-maximum, repetition range of 4-8 (2-4 sets), and tempo of 2/0/2 (eccentric/pause/concentric/'pause'). GPT4.0 proposed intermediate- and advanced programme, with a frequency of 5 or 4 sessions, 60-90% or 70-95% intensity, 3-5 sets or 3-6 sets, 5-12 or 3-12 repetitions, respectively. GPT3.5 proposed rest intervals of 90-120 s, and exercise tempo of 2/0/2. GPT4.0 proposed 60-180 (intermediate) or 60-300 s (advanced), with exercise tempo of 2/1/2 for intermediates, and 3/0/1/0, 2/0/1/0, and 1/0/1/0 for advanced programmes. All derived programmes were objectively similar regardless of sex. ChatGPT generated training programmes which likely require additional fine-tuning before application. GPT4.0 synthesised more information than GPT3.5 in response to the prompt, and demonstrated recognition awareness of training experience (intermediate vs advanced). ChatGPT may serve as a complementary tool for writing 'draft' programme, but likely requires human expertise to maximise training programme effectiveness.
- Keywords
- Chatbot, Exercise prescription, Individualised training, Periodisation, Programming, Strength training,
- Publication type
- Journal Article MeSH
BACKGROUND: The study aimed to evaluate the effects of ischemia used during the rest periods between successive sets on maximal number of performed repetitions, time under tension and bar velocity during the bench press exercise. METHODS AND MATERIALS: Thirteen healthy resistance trained men volunteered for the study (age = 28.5 ± 7.1 years; body mass = 87.2 ± 8.6 kg; bench press 1RM = 143.1 ± 20.7 kg; training experience = 11.0 ± 6.9 years). In experimental protocol the subjects performed 5 sets of bench press exercise at 70%1RM with maximal number of repetitions in each and with 5 minutes rest periods between each set. During the ischemia condition occlusion with 80% arterial occlusion pressure (AOP) was applied using a 10 cm wide cuff, before the first set of the bench press exercise and during all rest periods between sets (for 4.5 minute). During the control condition no ischemia was applied. RESULTS: The two-way repeated measures ANOVA showed a statistically significant interaction effect for time under tension (p = 0.022; η2 = 0.20). However, the results did not show a statistically significant interaction effect for peak bar velocity (p = 0.28; η2 = 0.10) mean bar velocity (p = 0.38; η2 = 0.08), and for number of performed repetitions (p = 0.28; η2 = 0.09). The post hoc analysis for interaction showed significantly shorter time under tension for ischemia condition compared to control in set 1 (p < 0.01). The post hoc analysis for main effect of condition revealed that time under tension was significantly shorter for ischemia compared to control condition (p = 0.04). CONCLUSION: The results of this study indicate that ischemia intra-conditioning does not increase strength-endurance performance as well as bar velocity during bench press exercise performed to muscle failure.
- MeSH
- Time Factors MeSH
- Exercise MeSH
- Adult MeSH
- Muscle, Skeletal * physiology MeSH
- Humans MeSH
- Young Adult MeSH
- Nutritional Status MeSH
- Rest physiology MeSH
- Resistance Training * MeSH
- Muscle Strength MeSH
- Weight Lifting physiology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The main goal of the present study was to evaluate the acute effects of blood flow restriction (BFR) at 70% of full arterial occlusion pressure on strength-endurance performance during the bench press exercise. The study included 14 strength-trained male subjects (age = 25.6 ± 4.1 years; body mass = 81.7 ± 10.8 kg; bench press 1 repetition maximum (1RM) = 130.0 ± 22.1 kg), experienced in resistance training (3.9 ± 2.4 years). During the experimental sessions in a randomized crossover design, the subjects performed three sets of the bench press at 80% 1RM performed to failure with two different conditions: without BFR (CON); and with BFR (BFR). Friedman's test showed significant differences between BFR and CON conditions for the number of repetitions performed (p < 0.001); for peak bar velocity (p < 0.001) and for mean bar velocity (p < 0.001). The pairwise comparisons showed a significant decrease for peak bar velocity and mean bar velocity in individual Set 1 for BFR when compared to CON conditions (p = 0.01 for both). The two-way repeated measures ANOVA showed a significant main effect for the time under tension (p = 0.02). A post-hoc comparisons for the main effect showed a significant increase in time under tension for BFR when compared to CON (p = 0.02). The results of the presented study indicate that BFR used during strength-endurance exercise generally does not decrease the level of endurance performance, while it causes a drop in bar velocity.
- Keywords
- Cuff Velocity of movement, Occlusion, Resistance exercise, Sport performance,
- Publication type
- Journal Article MeSH
Hypertrophy and strength are two common long-term goals of resistance training that are mediated by the manipulation of numerous variables. One training variable that is often neglected but is essential to consider for achieving strength and hypertrophy gains is the movement tempo of particular repetitions. Although research has extensively investigated the effects of different intensities, volumes, and rest intervals on muscle growth, many of the present hypertrophy guidelines do not account for different movement tempos, likely only applying to volitional movement tempos. Changing the movement tempo during the eccentric and concentric phases can influence acute exercise variables, which form the basis for chronic adaptive changes to resistance training. To further elaborate on the already unclear anecdotal evidence of different movement tempos on muscle hypertrophy and strength development, one must acknowledge that the related scientific research does not provide equivocal evidence. Furthermore, there has been no assessment of the impact of duration of particular movement phases (eccentric vs. concentric) on chronic adaptations, making it difficult to draw definitive conclusions in terms of resistance-training recommendations. Therefore, the purpose of this review is to explain how variations in movement tempo can affect chronic adaptive changes. This article provides an overview of the available scientific data describing the impact of movement tempo on hypertrophy and strength development with a thorough analysis of changes in duration of particular phases of movement. Additionally, the review provides movement tempo-specific recommendations as well real training solutions for strength and conditioning coaches and athletes, depending on their goals.
- MeSH
- Exercise MeSH
- Adaptation, Physiological MeSH
- Hypertrophy MeSH
- Muscle, Skeletal MeSH
- Humans MeSH
- Resistance Training * MeSH
- Muscle Strength MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Resistance training is a significant part of ice-hockey players' conditioning, where optimal loading should ensure strength development and proper recovery. Therefore, this study aimed to compare the acute physiological responses to fast and medium movement tempo resistance exercises in ice-hockey players. METHODS: Fourteen ice-hockey players (26.2 ± 4.2 years; 86.4 ± 10.2 kg; squat one repetition maximum (1RM) = 130.5 ± 18.5) performed five sets of the barbell squat and barbell bench press at 80% 1RM until failure in a crossover design one week apart using either 2/0/2/0 or 6/0/2/0 (eccentric/isometric/concentric/isometric) tempo of movement. The blood samples to evaluate the concentration of cortisol, testosterone, insulin-like growth factor 1 (IGF-1), and growth hormone (hGH) were taken before exercise, 3 min after the last set of the squat exercise, 3 min after the last set of the bench press exercise, and after 30 min of recovery. RESULTS: The 2/0/2/0 tempo resulted in a higher number of repetitions (p < 0.001) and lower time under tension (p < 0.001) in the squat and bench press exercises compared to the 6/0/2/0 movement tempo. The endocrine responses to exercise were significantly higher during the 2/0/2/0 compared to the 6/0/2/0 movement tempo protocol for IGF-1, hGH, and cortisol (p < 0.01). There were no differences in testosterone responses between exercises performed with fast and medium movement tempos. CONCLUSION: Fast eccentric tempo induced higher cortisol, IGF-1, and hGH responses compared to the medium tempo. Therefore, fast eccentric movement tempo seems to be more useful in eliciting training stimulus than medium eccentric tempo during resistance training in ice-hockey players. However, future studies are needed to confirm our findings.
- Keywords
- conditioning, cortisol, growth hormone (hGH), insulin-like growth factor 1 (IGF-1), resistance training, testosterone,
- MeSH
- Hockey * MeSH
- Hydrocortisone MeSH
- Cross-Over Studies MeSH
- Muscle, Skeletal MeSH
- Humans MeSH
- Human Growth Hormone * MeSH
- Resistance Training * MeSH
- Muscle Strength MeSH
- Testosterone MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Hydrocortisone MeSH
- Human Growth Hormone * MeSH
- Testosterone MeSH
The aim of this study was to compare the electromyographic activity between the standard and cambered bar during the bench press (BP) exercise. Twelve resistance-trained males performed the flat BP with a standard and a cambered bar at selected loads (50%, 70%, and 90% 1RM). Muscle activation assessed by surface electromyography (sEMG) was recorded for the pectoralis major, anterior deltoid, and the lateral and long heads of the triceps brachii during each attempt. A three-way repeated measures ANOVA indicated statistically significant main interaction for bar × load × muscle (p < 0.01); bar × load (p < 0.01); bar × muscle (p < 0.01); load × muscle (p < 0.01). There was also a main effect for the bar (p < 0.01); load (p < 0.01); and muscle group (p < 0.01). The post hoc analysis for the main multiple interaction effect of bar × load × muscle showed a statistically significant increase in sEMG for the standard bar in the pectoralis major compared to the cambered bar at 50% 1RM (p < 0.01) and 90% 1RM (p < 0.01), as well as in the triceps brachii long at 90% 1RM (p < 0.01). Furthermore, a statistically significant decrease in sEMG was registered for the standard bar in the anterior deltoid compared to the cambered bar at 90% 1RM (p = 0.02). The results indicated that the cambered bar was superior in activating the anterior deltoid muscle compared to the standard bar during the BP exercise, whereas the standard bar provided higher pectoralis major and triceps brachii long head sEMG activity at 90% 1RM.
- Keywords
- EMG, internal movement structure, range of motion, resistance training, training equipment,
- Publication type
- Journal Article MeSH
Background: The aim of the present study was to evaluate the effects of post-activation performance enhancement (PAPE) on resistance training volume during the bench press exercise (BP). The study included 12 healthy strength-trained males (age 25.2 ± 2.1 years, body mass 92.1 ± 8.7 kg, BP one-repetition maximum (1RM) 28.8 ± 10.5 kg, training experience 6.3 ± 2.1 years). Methods: The experiment was performed following a randomized crossover design, where each participant performed two different exercise protocols with a conditioning activity (CA) consisting of the BP with three sets of three repetitions at 85% 1RM (PAPE), and a control without the CA (CONT). To assess the differences between PAPE and CONT, the participants performed three sets of the BP to volitional failure at 60% 1RM. The differences in the number of performed repetitions (REP), time under tension (TUT), peak power output (PP), mean of peak power output (PPMEAN), mean power output (MP), peak bar velocity (PV), mean of peak bar velocity (PVMEAN), and mean bar velocity (MV) between the CONT and PAPE conditions were examined using repeated measures ANOVA. Results: The post-hoc analysis for the main condition effect indicated significant increases in TUT (p < 0.01) for the BP following PAPE, compared to the CONT condition. Furthermore, there was a significant increase in TUT (p < 0.01) in the third set for PAPE compared to the CONT condition. No statistically significant main effect was revealed for REP, PP, PV, PPMEAN, PVMEAN, MP, and MV. Conclusion: The main finding of the study was that the PAPE protocol increased training volume based on TUT, without changes in the number of preformed REP.
- Keywords
- bar velocity, power output, repetition, strength-endurance, time under tension,
- MeSH
- Exercise MeSH
- Adult MeSH
- Cross-Over Studies MeSH
- Muscle, Skeletal MeSH
- Humans MeSH
- Young Adult MeSH
- Resistance Training * MeSH
- Muscle Strength MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Randomized Controlled Trial MeSH
In this study, we examined the impact of contrast movement tempo (fast vs. slow) on power output and bar velocity during the bench press exercise. Ten healthy men (age = 26.9 ± 4.1 years; body mass = 90.5 ± 10.3 kg; bench press 1RM = 136.8 ± 27.7 kg) with significant experience in resistance training (9.4 ± 5.6 years) performed the bench press exercise under three conditions: with an explosive tempo of movement in each of three repetitions (E/E/E = explosive, explosive, explosive); with a slow tempo of movement in the first repetition and an explosive tempo in the next two repetitions (S/E/E = slow, explosive, explosive); and with a slow tempo of movement in the first two repetitions and an explosive tempo in the last repetition (S/S/E = slow, slow, explosive). The slow repetitions were performed with a 5/0/5/0 (eccentric/isometric/concentric/isometric) movement tempo, while the explosive repetitions were performed with an X/0/X/0 (X- maximal speed of movement) movement tempo. During each experimental session, the participants performed one set of three repetitions at 60%1RM. The two-way repeated measures ANOVA showed a statistically significant interaction effect for peak power output (PP; p = 0.03; η 2 = 0.26) and for peak bar velocity (PV; p = 0.04; η 2 = 0.24). Futhermore there was a statistically significant main effect of condition for PP (p = 0.04; η 2 = 0.30) and PV (p = 0.02; η 2 = 0.35). The post hoc analysis for interaction revealed that PP was significantly higher in the 2nd and 3rd repetition for E/E/E compared with the S/S/E (p < 0.01 for both) and significantly higher in the 2nd repetition for the S/E/E compared with S/S/E (p < 0.01). The post hoc analysis for interaction revealed that PV was significantly higher in the 2nd and 3rd repetition for E/E/E compared with the S/S/E (p < 0.01 for both), and significantly higher in the 2nd repetition for the S/E/E compared with the S/S/E (p < 0.01). The post hoc analysis for main effect of condition revealed that PP and PV was significantly higher for the E/E/E compared to the S/S/E (p = 0.04; p = 0.02; respectively). The main finding of this study was that different distribution of movement tempo during a set has a significant impact on power output and bar velocity in the bench press exercise at 60%1RM. However, the use of one slow repetition at the beginning of a set does not decrease the level of power output in the third repetition of that set.
- Keywords
- cadence, duration of repetition, resistance exercise, time under tension, velocity of movement,
- Publication type
- Journal Article MeSH