Most cited article - PubMed ID 33033283
Unlocking the mystery of the mid-Cretaceous Mysteriomorphidae (Coleoptera: Elateroidea) and modalities in transiting from gymnosperms to angiosperms
The click beetles (Elateridae) represent the major and well-known group of the polyphagan superfamily Elateroidea. Despite a relatively rich fossil record of Mesozoic Elateridae, only a few species are described from the Upper Cretaceous Burmese amber. Although Elateridae spend most of their lives as larvae, our knowledge on immature stages of this family is limited, which is especially valid for the fossils. So far, only a single larval click beetle has been reported from Burmese amber. Here, we describe two larval specimens from the same deposit which based on their morphology unambiguously belong to the predominantly Southern Hemisphere subfamily Pityobiinae, being the most similar to the representatives of tribe Tibionemini. However, since the larvae of the closely related bioluminescent Campyloxenini have not yet been described, we place our specimens to Tibionemini only tentatively. One species of Pityobiinae was recently described from Burmese amber based on adults, and we discuss if it can be congeneric with the here-reported larvae. Recent representatives of the Tibionemini + Campyloxenini clade are known from South America and New Zealand, and this group is hypothesized to have a Gondwanan origin. Hence, the newly discovered Burmese amber larvae may further contribute to a recently highly debated hypothesis that biota of the resin-producing forest on the Burma Terrane, which was probably an island drifting northward at the time of amber deposition, had at least partly Gondwanan affinities. The discovery of enigmatic click beetle larvae in the Upper Cretaceous Burmese amber sheds further light on the palaeodiversity and distribution of the relatively species-poor Gondwanan clade of click beetles, which contain a recent bioluminescent lineage, as well as on the taxonomic composition of the extinct Mesozoic ecosystem.
- Keywords
- Australia, Distribution, Elateridae, Fossil, Morphology, Pityobiinae,
- MeSH
- Coleoptera * anatomy & histology classification MeSH
- Phylogeny MeSH
- Amber * MeSH
- Larva * anatomy & histology MeSH
- Fossils * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Myanmar MeSH
- Names of Substances
- Amber * MeSH
Beetles constitute the most biodiverse animal order with over 380 000 described species and possibly several million more yet unnamed. Recent phylogenomic studies have arrived at considerably incongruent topologies and widely varying estimates of divergence dates for major beetle clades. Here, we use a dataset of 68 single-copy nuclear protein-coding (NPC) genes sampling 129 out of the 193 recognized extant families as well as the first comprehensive set of fully justified fossil calibrations to recover a refined timescale of beetle evolution. Using phylogenetic methods that counter the effects of compositional and rate heterogeneity, we recover a topology congruent with morphological studies, which we use, combined with other recent phylogenomic studies, to propose several formal changes in the classification of Coleoptera: Scirtiformia and Scirtoidea sensu nov., Clambiformia ser. nov. and Clamboidea sensu nov., Rhinorhipiformia ser. nov., Byrrhoidea sensu nov., Dryopoidea stat. res., Nosodendriformia ser. nov. and Staphyliniformia sensu nov., and Erotyloidea stat. nov., Nitiduloidea stat. nov. and Cucujoidea sensu nov., alongside changes below the superfamily level. Our divergence time analyses recovered a late Carboniferous origin of Coleoptera, a late Palaeozoic origin of all modern beetle suborders and a Triassic-Jurassic origin of most extant families, while fundamental divergences within beetle phylogeny did not coincide with the hypothesis of a Cretaceous Terrestrial Revolution.
- Keywords
- CAT-GTR, Coleoptera, classification, diversification, phylogenomics, substitution modelling,
- Publication type
- Journal Article MeSH
We here report a new elateroid, Anoeuma lawrencei Li, Kundrata and Cai gen. et sp. nov., from mid-Cretaceous Burmese amber. Though superficially similar to some soft-bodied archostematans, Anoeuma could be firmly placed in the polyphagan superfamily Elateroidea based on the hind wing venation. Detailed morphological comparisons between extant elateroids and the Cretaceous fossils suggest that the unique character combination does not fit with confidence into any existing soft-bodied elateroid group, although some characters indicate possible relationships between Anoeuma and Omalisinae. Our discovery of this new lineage further demonstrates the past diversity and morphological disparity of soft-bodied elateroids.
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The beetle family Ptilodactylidae contains more than 500 extant species; however, its fossil record is scarce and remains understudied. In this study, we describe a new species of Ptilodactylidae, Ptilodactyla eocenica Kundrata, Bukejs and Blank, sp. nov., based on a relatively well-preserved specimen from Baltic amber. We use X-ray microcomputed tomography to reconstruct its morphology since some of the principal diagnostic characters have been obscured by opaque bubbles. It is the third ptilodactylid species described from Baltic amber, and the first one belonging to the subfamily Ptilodactylinae. Additionally, we summarize the classification, diversity, and distribution of both extinct and extant Ptilodactylidae.
- Keywords
- Byrrhoidea, Elateriformia, Ptilodactylinae, X-ray microcomputed tomography, beetles, diversity, fossil, tertiary,
- Publication type
- Journal Article MeSH
The Elateridae (click-beetles) are the largest family in Elateroidea; however, their relationships, systematics and classification remain unclear. Our understanding of the origin, evolution, palaeodiversity and palaeobiogeography of Elateridae, as well as reconstruction of a reliable time-calibrated phylogeny for the group, are hampered by the lack of detailed knowledge of their fossil record. In this study, we summarize the current knowledge on all described fossil species in Elateridae, including their type material, geographic origin, age, bibliography and remarks on their systematic placement. Altogether, 261 fossil species classified in 99 genera and nine subfamilies are currently listed in this family. The Mesozoic click-beetle diversity includes 143 species, with most of them described from the Jurassic Karatau, and 118 described species are known from the Cenozoic deposits, mainly from the Eocene North American Florissant Formation and European Baltic amber. Available data on the described past diversity of Elateridae suggest that almost all fossil lineages in this group are in urgent need of revision and numerous Mesozoic species might belong to different families. Our study is intended to serve as a comprehensive basis for all subsequent research focused on the click-beetle fossil record.
- Keywords
- Cenozoic, Eucnemidae, Mesozoic, catalogue, classification, click-beetles, evolution, palaeodiversity, systematics,
- Publication type
- Journal Article MeSH
A new subfamily Drinosinae (Diptera, Limoniidae) is established with two fossil genera, Drinosa and Decessia gen. nov. with one new species, Decessia podenasi gen. et sp. nov. from Cretaceous Burmese amber. Additional description of Drinosa prisca is based on new material. A new subfamily shows unique reduction of radial veins combined with complete set of medial veins.
- Keywords
- Burmese amber, Cretaceous, fossil insects, new genus, new species, new subfamily,
- Publication type
- Journal Article MeSH
Beetle fossils are a rich source of information about the palaeodiversity and evolutionary history of the order Coleoptera. Despite the increasing rate of fossil research on click-beetles (Coleoptera: Elateridae), the most diverse group in the superfamily Elateroidea, their fossil record has remained largely unstudied. This may be caused by the combination of their rather uniform external morphology and the suboptimal state of preservation and visibility in most fossil specimens. Here, we used X-ray micro-computed tomography to reconstruct the morphology of an interesting click-beetle from Eocene Baltic amber, which had some principal diagnostic characters obscured by opaque bubbles and body position. Our results suggest that the newly described Baltelater bipectinatus gen. et sp. nov. belongs to tribe Protelaterini within subfamily Lissominae. Since Protelaterini have a predominantly Gondwanan distribution, our discovery is of a great importance for the historical biogeography of the group. Very distinctive are the bipectinate antennae with 11 antennomeres and with rami beginning on antennomere IV, which are not found in any recent Elateridae. The discovery of a new click-beetle lineage from European Eocene amber sheds further light on the palaeodiversity and historical diversification of the family as well as on the composition of the extinct amber forest ecosystem.
- MeSH
- Biological Evolution MeSH
- Coleoptera physiology MeSH
- Amber MeSH
- Forests MeSH
- Paleontology methods MeSH
- X-Ray Microtomography methods MeSH
- Fossils * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Baltic States MeSH
- Names of Substances
- Amber MeSH