diversity Dotaz Zobrazit nápovědu
Here, we provide an updated set of guidelines for naming genes in wheat that has been endorsed by the wheat research community. The last decade has seen a proliferation in genomic resources for wheat, including reference- and pan-genome assemblies with gene annotations, which provide new opportunities to detect, characterise, and describe genes that influence traits of interest. The expansion of genetic information has supported growth of the wheat research community and catalysed strong interest in the genes that control agronomically important traits, such as yield, pathogen resistance, grain quality, and abiotic stress tolerance. To accommodate these developments, we present an updated set of guidelines for gene nomenclature in wheat. These guidelines can be used to describe loci identified based on morphological or phenotypic features or to name genes based on sequence information, such as similarity to genes characterised in other species or the biochemical properties of the encoded protein. The updated guidelines provide a flexible system that is not overly prescriptive but provides structure and a common framework for naming genes in wheat, which may be extended to related cereal species. We propose these guidelines be used henceforth by the wheat research community to facilitate integration of data from independent studies and allow broader and more efficient use of text and data mining approaches, which will ultimately help further accelerate wheat research and breeding.
- MeSH
- fenotyp MeSH
- jedlá semena genetika MeSH
- pšenice * genetika MeSH
- rostlinné geny MeSH
- šlechtění rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
To attract and retain a more diverse workforce, organizations embrace diversity initiatives, expressed in diversity statements on their websites. While the explicit content of diversity statements influences attitudes towards organizations, much less is known about the effect of subtle cues such as emotions. In three pre-registered studies, we tested the effect of positive emotionality in diversity statements on attitudes towards organizations. Study 1 focused on the degree to which 600 European organizations employed emotionality in their diversity statements, finding that although their statements differed in the level of emotionality, on average, organizations avoided highly emotional words. Study 2 (N = 220 UK participants) tested the effect of original diversity statements on readers' attitudes towards an organization, demonstrating that the level of emotionality in the existing statements did not influence positive attitudes towards the organization. In Study 3 (N = 815 UK participants), we thus modified the diversity statements so that they contained high levels of positive emotionality that triggered more positive emotions and resulted in more positive attitudes towards an organization. Taken together, highly emotional words (e.g. passionate; happy; wholeheartedly) are key in diversity statements if organizations wish to increase their attractiveness among potential employees.
- Klíčová slova
- diversity statements, emotional expression, emotions, language, pre‐registered,
- MeSH
- emoce * MeSH
- lidé MeSH
- podněty MeSH
- postoj * MeSH
- rozmanitost pracovních sil MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: The observed positive diversity effect on ecosystem functioning has rarely been assessed in terms of intraspecific trait variability within populations. Intraspecific phenotypic variability could stem both from underlying genetic diversity and from plasticity in response to environmental cues. The latter might derive from modifications to a plant's epigenome and potentially last multiple generations in response to previous environmental conditions. We experimentally disentangled the role of genetic diversity and diversity of parental environments on population productivity, resistance against environmental fluctuations and intraspecific phenotypic variation. METHODS: A glasshouse experiment was conducted in which different types of Arabidopsis thaliana populations were established: one population type with differing levels of genetic diversity and another type, genetically identical, but with varying diversity levels of the parental environments (parents grown in the same or different environments). The latter population type was further combined, or not, with experimental demethylation to reduce the potential epigenetic diversity produced by the diversity of parental environments. Furthermore, all populations were each grown under different environmental conditions (control, fertilization and waterlogging). Mortality, productivity and trait variability were measured in each population. KEY RESULTS: Parental environments triggered phenotypic modifications in the offspring, which translated into more functionally diverse populations when offspring from parents grown under different conditions were brought together in mixtures. In general, neither the increase in genetic diversity nor the increase in diversity of parental environments had a remarkable effect on productivity or resistance to environmental fluctuations. However, when the epigenetic variation was reduced via demethylation, mixtures were less productive than monocultures (i.e. negative net diversity effect), caused by the reduction of phenotypic differences between different parental origins. CONCLUSIONS: A diversity of environmental parental origins within a population could ameliorate the negative effect of competition between coexisting individuals by increasing intraspecific phenotypic variation. A diversity of parental environments could thus have comparable effects to genetic diversity. Disentangling the effect of genetic diversity and that of parental environments appears to be an important step in understanding the effect of intraspecific trait variability on coexistence and ecosystem functioning.
- Klíčová slova
- Arabidopsis thaliana, DNA methylation, competition, epigenetic diversity, functional traits, genetic diversity, intraspecific phenotypic variability, parental effects, productivity, transgenerational effects,
- MeSH
- Arabidopsis * genetika MeSH
- biologická variabilita populace MeSH
- ekosystém MeSH
- fenotyp MeSH
- genetická variace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research.
- MeSH
- Archaea klasifikace genetika izolace a purifikace metabolismus MeSH
- biodiverzita * MeSH
- genetická variace MeSH
- genetické techniky * MeSH
- geologické sedimenty mikrobiologie MeSH
- methan metabolismus MeSH
- sladká voda mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- methan MeSH
While there has been increasing interest in how taxonomic diversity is changing over time, less is known about how long-term taxonomic changes may affect ecosystem functioning and resilience. Exploring long-term patterns of functional diversity can provide key insights into the capacity of a community to carry out ecological processes and the redundancy of species' roles. We focus on a protected freshwater system located in a national park in southeast Germany. We use a high-resolution benthic macroinvertebrate dataset spanning 32 years (1983-2014) and test whether changes in functional diversity are reflected in taxonomic diversity using a multidimensional trait-based approach and regression analyses. Specifically, we asked: (i) How has functional diversity changed over time? (ii) How functionally distinct are the community's taxa? (iii) Are changes in functional diversity concurrent with taxonomic diversity? And (iv) what is the extent of community functional redundancy? Resultant from acidification mitigation, macroinvertebrate taxonomic diversity increased over the study period. Recovery of functional diversity was less pronounced, lagging behind responses of taxonomic diversity. Over multidecadal timescales, the macroinvertebrate community has become more homogenous with a high degree of functional redundancy, despite being isolated from direct anthropogenic activity. While taxonomic diversity increased over time, functional diversity has yet to catch up. These results demonstrate that anthropogenic pressures can remain a threat to biotic communities even in protected areas. The differences in taxonomic and functional recovery processes highlight the need to incorporate functional traits in assessments of biodiversity responses to global change.
- Klíčová slova
- freshwater, functional diversity, functional redundancy, long term, long‐term ecosystem research, macroinvertebrate, protected area,
- Publikační typ
- časopisecké články MeSH
In this study, we characterized a collection of clinical samples obtained from Syrian and Turkish patients with cutaneous leishmaniasis using internal transcribed spacer 1 (ITS1) sequences. All obtained sequences belonged to Leishmania tropica. Combining them with those available from GenBank allowed us performing a broad-scale analysis of genetic diversity for this species. We demonstrated that L. tropica has a complex phylogeographic pattern with some haplotypes being widespread across endemic countries and others restricted to particular regions. We hypothesize that at least some of them may be associated with alternative vectors or animal reservoirs.
- Klíčová slova
- Cutaneous leishmaniasis, Haplotype diversity, ITS1, Phylogeography,
- MeSH
- fylogeografie MeSH
- genetická variace * MeSH
- haplotypy MeSH
- infekce přenášené vektorem MeSH
- Leishmania tropica genetika MeSH
- leishmanióza kožní epidemiologie přenos MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: General information-theoretic concepts such as f-divergence, f-information and f-entropy are applied to the genetic models where genes are characterized by randomly distributed alleles. The paper thus presents an information-theoretic background for measuring genetic distances between populations, genetic information in various observations on individuals about their alleles and, finally, genetic diversities in various populations. METHODS: Genetic distances were derived as divergences between frequencies of alleles representing a gene in two different populations. Genetic information was derived as a measure of statistical association between the observations taken on individuals and the alleles of these individuals. Genetic diversities were derived from divergences and information. RESULTS: The concept of genetic f-information introduced in the paper seems to be new. We show that the measures of genetic distance and diversity used in the previous literature are special cases of the genetic f-divergence and f-diversity introduced in the paper and illustrated by examples. We also display intimate connections between the genetic f-information and the genetic f-divergence on one side and genetic f-diversity on the other side. The examples at the same time also illustrate practical computations and applications of the important concepts of quantitative genetics introduced in the paper. CONCLUSIONS: We discussed a general class of f- divergence measures that are suitable measures of genetic distance between populations characterized by concrete frequencies of alleles. We have shown that a wide class of genetic information, called f-information, can be obtained from f-divergences and that a wide class of measures of genetic diversity, called f-diversities, can be obtained from the f-divergences and f-information.
- MeSH
- databáze genetické statistika a číselné údaje MeSH
- genetická variace * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mitigating the effects of global change on biodiversity requires its understanding in the past. The main proxy of plant diversity, fossil pollen record, has a complex relationship to surrounding vegetation and unknown spatial scale. We explored both using modern pollen spectra in species-rich and species-poor regions in temperate Central Europe. We also considered the biasing effects of the trees by using sites in forests and open habitats in each region. Pollen samples were collected from moss polsters at 60 sites and plant species were recorded along two 1 km-transects at each site. We found a significant positive correlation between pollen and plant richness (alpha diversity) in both complete datasets and for both subsets from open habitats. Pollen richness in forest datasets is not significantly related to floristic data due to canopy interception of pollen rather than to pollen productivity. Variances (beta diversity) of the six pollen and floristic datasets are strongly correlated. The source area of pollen richness is determined by the number of species appearing with increasing distance, which aggregates information on diversity of individual patches within the landscape mosaic and on their compositional similarity. Our results validate pollen as a reconstruction tool for plant diversity in the past.
The world's oceans represent by far the largest biome, with great importance for the global ecosystem [1-4]. The vast majority of ocean biomass and biodiversity is composed of microscopic plankton. Recent results from the Tara Oceans metabarcoding study revealed that a significant part of the plankton in the upper sunlit layer of the ocean is represented by an understudied group of heterotrophic excavate flagellates called diplonemids [5, 6]. We have analyzed the diversity and distribution patterns of diplonemid populations on the extended set of Tara Oceans V9 18S rDNA metabarcodes amplified from 850 size- fractionated plankton communities sampled across 123 globally distributed locations, for the first time also including samples from the mesopelagic zone, which spans the depth from about 200 to 1,000 meters. Diplonemids separate into four major clades, with the vast majority falling into the deep-sea pelagic diplonemid clade. Remarkably, diversity of this clade inferred from metabarcoding data surpasses even that of dinoflagellates, metazoans, and rhizarians, qualifying diplonemids as possibly the most diverse group of marine planktonic eukaryotes. Diplonemids display strong vertical separation between the photic and mesopelagic layers, with the majority of their relative abundance and diversity occurring in deeper waters. Globally, diplonemids display no apparent biogeographic structuring, with a few hyperabundant cosmopolitan operational taxonomic units (OTUs) dominating their communities. Our results suggest that the planktonic diplonemids are among the key heterotrophic players in the largest ecosystem of our biosphere, yet their roles in this ecosystem remain unknown.
- Klíčová slova
- Tara Oceans, cosmopolitan, diplonemids, diversity, metabarcoding, plankton,
- MeSH
- biodiverzita * MeSH
- ekosystém * MeSH
- Euglenozoa klasifikace genetika MeSH
- oceány a moře MeSH
- plankton klasifikace genetika MeSH
- RNA protozoální genetika MeSH
- RNA ribozomální 18S genetika MeSH
- sekvenční analýza RNA MeSH
- taxonomické DNA čárové kódování MeSH
- vodní organismy fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- oceány a moře MeSH
- Názvy látek
- RNA protozoální MeSH
- RNA ribozomální 18S MeSH
BACKGROUND: Phlebotomine sand flies (Diptera: Psychodidae) are haematophagous insects that transmit the protozoan parasite Leishmania infantum (Kinetoplastida: Trypanosomatidae), the main causative agent of both zoonotic visceral leishmaniasis (VL) and canine leishmaniasis (CanL) in the Mediterranean basin. Eight species of sand flies have been previously recorded in Romania: Phlebotomus papatasi, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus perfiliewi, Phlebotomus neglectus, Phlebotomus longiductus, Phlebotomus balcanicus and Sergentomyia minuta. Three of them (P. perfiliewi, P. neglectus and P. balcanicus) were incriminated as vectors of L. infantum. Recent reports of autochthonous CanL in Romania require updates on sand fly distribution and diversity in this country. METHODS: Between 2013-2014 and 2016-2018, CDC light traps and mouth aspirators were used to collect sand flies in 132 locations from Romania, indoors and around various animal species shelters. Species identification of collected specimens was done using morphological keys, genetic tools and MALDI-TOF protein profiling. RESULTS: Sand flies were present in seven localities (5.3%): Eibenthal, Baia Nouă, Gura Văii (south-western Romania, Mehedinţi County); Fundătura, Pâhneşti, Epureni (eastern Romania, Vaslui County); and Schitu (southern Romania, Giurgiu County). Of the total number of collected sand flies (n = 251), 209 (83.27%) were Phlebotomus neglectus, 39 (15.53%) P. perfiliewi, 1 (0.40%) P. papatasi, 1 (0.40%) P. balcanicus and 1 (0.40%) P. sergenti (sensu lato). CONCLUSIONS: We confirmed the presence of five sand fly species previously recorded in Romania. However, their updated distribution differs from historical data. The diversity of sand fly species in Romania and their presence in areas with Mediterranean climatic influences constitutes a threat for the reemergence of vector-borne diseases. In the context of CanL and VL reemergence in Romania, but also due to imported cases of the diseases in both humans and dogs, updates on vector distribution are imperative.
- Klíčová slova
- Canine leishmaniasis, Distribution, Diversity, Romania, Sand flies,
- MeSH
- genetická variace * MeSH
- hmyz - vektory genetika fyziologie MeSH
- Phlebotomus genetika fyziologie MeSH
- rozšíření zvířat * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Rumunsko MeSH