Nejvíce citovaný článek - PubMed ID 33302374
Deleterious Effects of Hyperactivity of the Renin-Angiotensin System and Hypertension on the Course of Chemotherapy-Induced Heart Failure after Doxorubicin Administration: A Study in Ren-2 Transgenic Rat
All anthracyclines, including doxorubicin (DOXO), the most common and still indispensable drug, exhibit cardiotoxicity with inherent risk of irreversible cardiomyopathy leading to heart failure with reduced ejection fraction (HFrEF). Current pharmacological strategies are clearly less effective for this type of HFrEF, hence an urgent need for new therapeutic approaches. The prerequisite for success is thorough understanding of pathophysiology of this HFrEF form, which requires an appropriate animal model of the disease. The aim of this study was to comprehensively characterise a novel model of HF with cardiorenal syndrome, i.e. DOXO-induced HFrEF with nephrotic syndrome, in which DOXO was administered to Ren-2 transgenic rats (TGR) via five intravenous injections in a cumulative dose of 10 mg/kg of body weight (BW). Our analysis included survival, echocardiography, as well as histological examination of the heart and kidneys, blood pressure, but also a broad spectrum of biomarkers to evaluate cardiac remodelling, fibrosis, apoptosis, oxidative stress and more. We have shown that the new model adequately mimics the cardiac remodelling described as "eccentric chamber atrophy" and myocardial damage typical for DOXO-related cardiotoxicity, without major damage of the peritoneum, lungs and liver. This pattern corresponds well to a clinical situation of cancer patients receiving anthracyclines, where HF develops with some delay after the anticancer therapy. Therefore, this study may serve as a comprehensive reference for all types of research on DOXO-related cardiotoxicity, proving especially useful in the search for new therapeutic strategies.
- Klíčová slova
- Chemotherapy induced heart failure, Doxorubicin, Experimental model of heart failure, NO/sGC/cGMP pathway, Ren-2 transgenic hypertensive rat,
- MeSH
- doxorubicin * škodlivé účinky MeSH
- krysa rodu Rattus MeSH
- ledviny účinky léků patofyziologie MeSH
- modely nemocí na zvířatech * MeSH
- nefrotický syndrom * chemicky indukované farmakoterapie patofyziologie MeSH
- oxidační stres účinky léků MeSH
- potkani transgenní * MeSH
- protinádorová antibiotika škodlivé účinky MeSH
- srdeční selhání * chemicky indukované patofyziologie MeSH
- tepový objem * účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- doxorubicin * MeSH
- protinádorová antibiotika MeSH
Renal nerves play a critical role in cardiorenal interactions. Renal denervation (RDN) improved survival in some experimental heart failure (HF) models. It is not known whether these favorable effects are indirect, explainable by a decrease in vascular afterload, or diminished neurohumoral response in the kidneys, or whether RDN procedure per se has direct myocardial effects in the failing heart. To elucidate mechanisms how RDN affects failing heart, we studied load-independent indexes of ventricular function, gene markers of myocardial remodeling, and cardiac sympathetic signaling in HF, induced by chronic volume overload (aorto-caval fistula, ACF) of Ren2 transgenic rats. Volume overload by ACF led to left ventricular (LV) hypertrophy and dysfunction, myocardial remodeling (upregulated Nppa, MYH 7/6 genes), increased renal and circulating norepinephrine (NE), reduced myocardial NE content, increased monoaminoxidase A (MAO-A), ROS production and decreased tyrosine hydroxylase (+) nerve staining. RDN in HF animals decreased congestion in the lungs and the liver, improved load-independent cardiac function (Ees, PRSW, Ees/Ea ratio), without affecting arterial elastance or LV pressure, reduced adverse myocardial remodeling (Myh 7/6, collagen I/III ratio), decreased myocardial MAO-A and inhibited renal neprilysin activity. RDN increased myocardial expression of acetylcholinesterase (Ache) and muscarinic receptors (Chrm2), decreased circulating and renal NE, but increased myocardial NE content, restoring so autonomic control of the heart. These changes likely explain improvements in survival after RDN in this model. The results suggest that RDN has remote, load-independent and favorable intrinsic myocardial effects in the failing heart. RDN therefore could be a useful therapeutic strategy in HF.
- Klíčová slova
- Heart failure, Norepinephrine, Renal denervation, Sympathetic nervous system, Volume overload,
- MeSH
- krysa rodu Rattus MeSH
- ledviny * inervace metabolismus MeSH
- modely nemocí na zvířatech * MeSH
- myokard * metabolismus MeSH
- noradrenalin * krev metabolismus MeSH
- potkani transgenní * MeSH
- remodelace komor fyziologie MeSH
- srdce inervace patofyziologie MeSH
- srdeční selhání * patofyziologie metabolismus MeSH
- sympatektomie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- noradrenalin * MeSH
The aim of the study was to clarify the role of the interplay between hypertension and the renin-angiotensin system (RAS) in the pathophysiology of myocardial ischemia/reperfusion (I/R) injury. We hypothesized that in the late phase of hypertension with already developed signs of end-organ damage, inappropriate RAS activation could impair cardiac tolerance to I/R injury. Experiments were performed in male Cyp1a1-Ren-2 transgenic rats with inducible hypertension. The early phase of ANG II-dependent hypertension was induced by 5 days and the late phase by the 13 days dietary indole-3-carbinol (I3C) administration. Noninduced rats served as controls. Echocardiography and pressure-volume analysis were performed, angiotensins' levels were measured and cardiac tolerance to ischemia/reperfusion injury was studied. The infarct size was significantly reduced (by 50%) in 13 days I3C-induced hypertensive rats with marked cardiac hypertrophy, this reduction was abolished by losartan treatment. In the late phase of hypertension there are indications of a failing heart, mainly in reduced preload recruitable stroke work (PRSW), but only nonsignificant trends in worsening of some other parameters, showing that the myocardium is in a compensated phase. The influence of the RAS depends on the balance between the vasoconstrictive and the opposed vasodilatory axis. In the initial stage of hypertension, the vasodilatory axis of the RAS prevails, and with the development of hypertension the vasoconstrictive axis of the RAS becomes stronger. We observed a clear effect of AT1 receptor blockade on maximum pressure in left ventricle, cardiac hypertrophy and ANG II levels. In conclusion, we confirmed improved cardiac tolerance to I/R injury in hypertensive hypertrophied rats and showed that, in the late phase of hypertension, the myocardium is in a compensated phase.
- Klíčová slova
- ANG II-dependent hypertension, AT1 receptor antagonist, P-V analysis, ischemia/reperfusion injury, renin-angiotensin system,
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Evaluation of the effect of endothelin type A (ET A ) receptor blockade on the course of volume-overload heart failure in rats with angiotensin II-dependent hypertension. METHODS: Ren-2 renin transgenic rats (TGR) were used as a model of hypertension. Heart failure was induced by creating an aorto-caval fistula (ACF). Selective ET A receptor blockade was achieved by atrasentan. For comparison, other rat groups received trandolapril, an angiotensin-converting enzyme inhibitor (ACEi). Animals first underwent ACF creation and 2 weeks later the treatment with atrasentan or trandolapril, alone or combined, was applied; the follow-up period was 20 weeks. RESULTS: Eighteen days after creating ACF, untreated TGR began to die, and none was alive by day 79. Both atrasentan and trandolapril treatment improved the survival rate, ultimately to 56% (18 of 31 animals) and 69% (22 of 32 animals), respectively. Combined ACEi and ET A receptor blockade improved the final survival rate to 52% (17 of 33 animals). The effects of the three treatment regimens on the survival rate did not significantly differ. All three treatment regimens suppressed the development of cardiac hypertrophy and lung congestion, decreased left ventricle (LV) end-diastolic volume and LV end-diastolic pressure, and improved LV systolic contractility in ACF TGR as compared with their untreated counterparts. CONCLUSION: The treatment with ET A receptor antagonist delays the onset of decompensation of volume-overload heart failure and improves the survival rate in hypertensive TGR with ACF-induced heart failure. However, the addition of ET A receptor blockade did not enhance the beneficial effects beyond those obtained with standard treatment with ACEi alone.
- MeSH
- angiotensin II MeSH
- atrasentan MeSH
- endotelin-1 MeSH
- endoteliny MeSH
- hypertenze * komplikace farmakoterapie MeSH
- inhibitory ACE farmakologie MeSH
- krysa rodu Rattus MeSH
- píštěle * MeSH
- potkani transgenní MeSH
- receptor angiotensinu typ 1 MeSH
- receptor endotelinu A MeSH
- srdeční selhání * farmakoterapie etiologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- angiotensin II MeSH
- atrasentan MeSH
- endotelin-1 MeSH
- endoteliny MeSH
- inhibitory ACE MeSH
- receptor angiotensinu typ 1 MeSH
- receptor endotelinu A MeSH
Adverse remodelling following an initial insult is the hallmark of heart failure (HF) development and progression. It is manifested as changes in size, shape, and function of the myocardium. While cardiac remodelling may be compensatory in the short term, further neurohumoral activation and haemodynamic overload drive this deleterious process that is associated with impaired prognosis. However, in some patients, the changes may be reversed. Left ventricular reverse remodelling (LVRR) is characterized as a decrease in chamber volume and normalization of shape associated with improvement in both systolic and diastolic function. LVRR might occur spontaneously or more often in response to therapeutic interventions that either remove the initial stressor or alleviate some of the mechanisms that contribute to further deterioration of the failing heart. Although the process of LVRR in patients with new-onset HF may take up to 2 years after initiating treatment, there is a significant portion of patients who do not improve despite optimal therapy, which has serious clinical implications when considering treatment escalation towards more aggressive options. On the contrary, in patients that achieve delayed improvement in cardiac function and architecture, waiting might avoid untimely implantable cardioverter-defibrillator implantation. Therefore, prognostication of successful LVRR based on clinical, imaging, and biomarker predictors is of utmost importance. LVRR has a positive impact on prognosis. However, reverse remodelled hearts continue to have abnormal features. In fact, most of the molecular, cellular, interstitial, and genome expression abnormalities remain and a susceptibility to dysfunction redevelopment under biomechanical stress persists in most patients. Hence, a distinction should be made between reverse remodelling and true myocardial recovery. In this comprehensive review, current evidence on LVRR, its predictors, and implications on prognostication, with a specific focus on HF patients with non-ischaemic cardiomyopathy, as well as on novel drugs, is presented.
- Klíčová slova
- Cardiac remodelling, Heart failure, Left ventricular reverse remodelling, Non-ischaemic cardiomyopathy, Predictors, Reverse remodelling,
- MeSH
- echokardiografie MeSH
- funkce levé komory srdeční fyziologie MeSH
- kardiomyopatie * MeSH
- lidé MeSH
- remodelace komor fyziologie MeSH
- srdeční selhání * komplikace etiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This study evaluates the effects of chronic treatment with EET-A, an orally active epoxyeicosatrienoic acid (EETs) analog, on the course of aorto-caval fistula (ACF)-induced heart failure (HF) in Ren-2 transgenic rats (TGR), a model characterized by hypertension and augmented activity of the renin-angiotensin system (RAS). The results were compared with standard pharmacological blockade of the RAS using angiotensin-converting enzyme inhibitor (ACEi). The rationale for employing EET-A as a new treatment approach is based on our findings that apart from increased RAS activity, untreated ACF TGR also shows kidney and left ventricle (LV) tissue deficiency of EETs. Untreated ACF TGR began to die 17 days after creating ACF and were all dead by day 84. The treatment with EET-A alone or ACEi alone improved the survival rate: in 156 days after ACF creation, it was 45.5% and 59.4%, respectively. The combined treatment with EET-A and ACEi appeared to improve the final survival to 71%; however, the difference from either single treatment regimen did not reach significance. Nevertheless, our findings support the notion that targeting the cytochrome P-450-dependent epoxygenase pathway of arachidonic acid metabolism should be considered for the treatment of HF.
The aim of the present study was to perform kidney messenger ribonucleic acid (mRNA) analysis in normotensive, Hannover Sprague-Dawley (HanSD) rats and hypertensive, Ren-2 renin transgenic rats (TGR) after doxorubicin-induced heart failure (HF) with specific focus on genes that are implicated in the pathophysiology of HF-associated cardiorenal syndrome. We found that in both strains renin and angiotensin-converting enzyme mRNA expressions were upregulated indicating that the vasoconstrictor axis of the renin-angiotensin system was activated. We found that pre-proendothelin-1, endothelin-converting enzyme type 1 and endothelin type A receptor mRNA expressions were upregulated in HanSD rats, but not in TGR, suggesting the activation of endothelin system in HanSD rats, but not in TGR. We found that mRNA expression of cytochrome P-450 subfamily 2C23 was downregulated in TGR and not in HanSD rats, suggesting the deficiency in the intrarenal cytochrome P450-dependent pathway of arachidonic acid metabolism in TGR. These results should be the basis for future studies evaluating the pathophysiology of cardiorenal syndrome secondary to chemotherapy-induced HF in order to potentially develop new therapeutic approaches.
- Klíčová slova
- chemotherapy-induced heart failure, cytochrome P-450, doxorubicin, endothelin system, hypertension, kidney, renal adrenergic system, renin-angiotensin-aldosterone system,
- MeSH
- doxorubicin škodlivé účinky MeSH
- hypertenze komplikace genetika patofyziologie MeSH
- krysa rodu Rattus MeSH
- ledviny účinky léků patofyziologie MeSH
- messenger RNA genetika MeSH
- nemoci ledvin chemicky indukované genetika patofyziologie MeSH
- potkani Sprague-Dawley MeSH
- potkani transgenní MeSH
- protinádorová antibiotika škodlivé účinky MeSH
- regulace genové exprese účinky léků MeSH
- renin-angiotensin systém účinky léků MeSH
- renin genetika MeSH
- srdeční selhání chemicky indukované genetika patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- doxorubicin MeSH
- messenger RNA MeSH
- protinádorová antibiotika MeSH
- Ren2 protein, rat MeSH Prohlížeč
- renin MeSH