Nejvíce citovaný článek - PubMed ID 33605024
Thermal and pH Stabilities of i-DNA: Confronting in vitro Experiments with Models and In-Cell NMR Data
Nucleic acids, molecules essential for all life, can adopt many alternative structures besides the well-known right-handed double helix, some of which have been reported to exist and function in vivo. One of the most appropriate methods for structural studies of nucleic acids is circular dichroism spectroscopy, utilizing structure-induced chirality due to the asymmetric winding of absorbing nucleobases. Using electronic CD and absorption spectroscopies in combination with melting experiments, we analyzed a conformational equilibrium between DNA double helix and two alternative conformations of nucleic acids, cytosine i-motifs and guanine quadruplexes, as a function of the primary structure of model G/C-rich sequences, containing blocks of G and C runs in particular DNA strands. This paper is a part of special issue dedicated to 70th anniversary of the Biophysical Institute of the Czech Academy of Sciences, where circular dichroism spectroscopy of nucleic acids has been used successfully and impactfully for many years.
- Klíčová slova
- Circular dichroism spectroscopy, Conformation equilibrium, Cytosine i-motif, DNA, Guanine quadruplex,
- Publikační typ
- časopisecké články MeSH
Aptamers are short DNA or RNA sequences that can fold into unique three-dimensional structures, enabling them to bind specifically to target molecules with high affinity, similar to antibodies. A distinctive feature of many aptamers is their ability to adopt a G-quadruplex (G4) fold, a four-stranded structure formed by guanine-rich sequences. While G4 formation has been proposed or demonstrated for some aptamers, we aimed to investigate how frequently quadruplex-prone motifs emerge from the SELEX process. To achieve this, we examined quadruplex candidate sequences from the UTexas Aptamer Database, which contains over 1400 aptamer sequences extracted from 400 publications spanning several decades. We analyzed the G4 and i-motif propensity of these sequences. While no likely i-motif forming candidates were found, nearly 1/4 of DNA aptamers and 1/6 of RNA aptamers were predicted to form G4 structures. Interestingly, many motifs capable of forming G4 structures were not previously reported or suspected. Out of 311 sequences containing a potential stable G4 motif, only 53 of them (17%) reported the word "quadruplex" in the corresponding article. We experimentally tested G4 formation for 30 aptamer sequences and were able to confirm G4 formation for all the sequences with a G4Hunter score of 1.31 or more. These observations suggest the need to reevaluate G4 propensity among aptamer sequences.
- MeSH
- aptamerová technika SELEX MeSH
- aptamery nukleotidové * chemie MeSH
- G-kvadruplexy * MeSH
- guanin chemie MeSH
- nukleotidové motivy MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aptamery nukleotidové * MeSH
- guanin MeSH
I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C. Our findings show that iMFPS displaying pHT < 7 under reference in vitro conditions occur predominantly in unfolded states in cells, while those with pHT > 7 appear as a mix of folded and unfolded states depending on the cell cycle phase. Comparing these results with previous data obtained using an iM-specific antibody (iMab) reveals that cell cycle-dependent iM formation has a dual origin, and iM formation concerns only a tiny fraction (possibly 1%) of genomic sites with iM formation propensity. We propose a comprehensive model aligning observations from iMab and in-cell NMR and enabling the identification of iMFPS capable of adopting iM structures under physiological conditions in living human cells. Our results suggest that many iMFPS may have biological roles linked to their unfolded states.
- MeSH
- azidy * MeSH
- benzazepiny * MeSH
- DNA MeSH
- HeLa buňky MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- protilátky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 7-iodo-8-hydroxy-3-methyl-1-(4-azidophenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine MeSH Prohlížeč
- azidy * MeSH
- benzazepiny * MeSH
- DNA MeSH
- protilátky MeSH
Cytosine-rich DNA regions can form four-stranded structures based on hemi-protonated C.C+ pairs, called i-motifs (iMs). Using CD, UV absorption, NMR spectroscopy, and DSC calorimetry, we show that model (CnT3)3Cn (Cn) sequences adopt iM under neutral or slightly alkaline conditions for n > 3. However, the iMs are formed with long-lasting kinetics under these conditions and melt with significant hysteresis. Sequences with n > 6 melt in two or more separate steps, indicating the presence of different iM species, the proportion of which is dependent on temperature and incubation time. At ambient temperature, kinetically favored iMs of low stability are formed, most likely consisting of short C.C+ blocks. These species act as kinetic traps and prevent the assembly of thermodynamically favored, fully C.C+ paired iMs. A higher temperature is necessary to unfold the kinetic forms and enable their substitution by a slowly developing thermodynamic structure. This complicated kinetic partitioning process considerably slows down iM folding, making it much slower than the timeframes of biological reactions and, therefore, unlikely to have any biological relevance. Our data suggest kinetically driven iM species as more likely to be biologically relevant than thermodynamically most stable iM forms.
- MeSH
- DNA * genetika chemie MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- konformace nukleové kyseliny MeSH
- nukleotidové motivy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA * MeSH
Recently, the 1H-detected in-cell NMR spectroscopy has emerged as a unique tool allowing the characterization of interactions between nucleic acid-based targets and drug-like molecules in living human cells. Here, we assess the application potential of 1H and 19F-detected in-cell NMR spectroscopy to profile drugs/ligands targeting DNA G-quadruplexes, arguably the most studied class of anti-cancer drugs targeting nucleic acids. We show that the extension of the original in-cell NMR approach is not straightforward. The severe signal broadening and overlap of 1H in-cell NMR spectra of polymorphic G-quadruplexes and their complexes complicate their quantitative interpretation. Nevertheless, the 1H in-cell NMR can be used to identify drugs that, despite strong interaction in vitro, lose their ability to bind G-quadruplexes in the native environment. The in-cell NMR approach is adjusted to a recently developed 3,5-bis(trifluoromethyl)phenyl probe to monitor the intracellular interaction with ligands using 19F-detected in-cell NMR. The probe allows dissecting polymorphic mixture in terms of number and relative populations of individual G-quadruplex species, including ligand-bound and unbound forms in vitro and in cellulo. Despite the probe's discussed limitations, the 19F-detected in-cell NMR appears to be a promising strategy to profile G-quadruplex-ligand interactions in the complex environment of living cells.
- Klíčová slova
- BRACO19, Bcl2, G-quadruplex, KRAS, NMM, PhenDC3, drug, in-cell NMR, ligand, telomeric DNA,
- MeSH
- DNA chemie účinky léků MeSH
- G-kvadruplexy účinky léků MeSH
- konformace nukleové kyseliny účinky léků MeSH
- léčivé přípravky chemie MeSH
- lidé MeSH
- ligandy MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární modely MeSH
- protony MeSH
- vazebná místa účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- léčivé přípravky MeSH
- ligandy MeSH
- protony MeSH