Most cited article - PubMed ID 33715860
Global economic costs of aquatic invasive alien species
Biological invasions threaten global biodiversity, human well-being and economies. Many regional and taxonomic syntheses of monetary costs have been produced recently but with important knowledge gaps owing to uneven geographic and taxonomic research intensity. Here we combine species distribution models, macroeconomic data and the InvaCost database to produce the highest resolution spatio-temporal cost estimates currently available to bridge these gaps. From a subset of 162 invasive species with 'highly reliable' documented costs at the national level, our interpolation focuses on countries that have not reported any costs despite the known presence of invasive species. This analysis demonstrates a substantial underestimation, with global costs potentially estimated to be 1,646% higher for these species than previously recorded. This discrepancy was uneven geographically and taxonomically, respectively peaking in Europe and for plants. Our results showed that damage costs were primarily driven by gross domestic product, human population size, agricultural area and environmental suitability, whereas management expenditure correlated with gross domestic product and agriculture areas. We also found a lag time for damage costs of 46 years, but management spending was not delayed. The methodological predictive approach of this study provides a more complete view of the economic dimensions of biological invasions and narrows the global disparity in invasion cost reporting.
- MeSH
- Biodiversity * MeSH
- Conservation of Natural Resources * economics MeSH
- Introduced Species * economics MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
Invasion science addresses interconnected ecological, economic, and social challenges posed by the introduction of nonnative species. Therefore, invasion scientists have to consider and reconcile interdisciplinary needs while addressing the potential implications of their findings. Navigating diverse disciplines, including environmental sciences, ecology, economics, and the humanities, invasion scientists seek to arrive at informed decisions on invasion risk, impact, and management. Individual biases, uncertainties, and systemic pressures influence the ability to maintain objectivity and resist pressures that might otherwise distort their findings or applications. In the present commentary, we examine conceptual and ethical dilemmas within the field of invasion science, particularly reputational and the risks of the discipline perpetuating its own relevance by framing invasions as insurmountable challenges. In the discussion, we highlight how incentive structures, biased assessments and framing, and conflicts of interest may compromise the discipline's integrity. We also explore questions surrounding human responsibility to animal welfare and highlight ethical conundrums in the management of invasive species.
- Keywords
- environmental ethics, ethical dilemmas, human responsibility, philosophical challenges, sustainability science,
- Publication type
- Journal Article MeSH
Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development.
- Keywords
- InvaCost, economic impacts, environmental management, guiding policy, invasive alien species,
- Publication type
- Journal Article MeSH
BACKGROUND: Biological invasions threaten the functioning of ecosystems, biodiversity, and human well-being by degrading ecosystem services and eliciting massive economic costs. The European Union has historically been a hub for cultural development and global trade, and thus, has extensive opportunities for the introduction and spread of alien species. While reported costs of biological invasions to some member states have been recently assessed, ongoing knowledge gaps in taxonomic and spatio-temporal data suggest that these costs were considerably underestimated. RESULTS: We used the latest available cost data in InvaCost (v4.1)-the most comprehensive database on the costs of biological invasions-to assess the magnitude of this underestimation within the European Union via projections of current and future invasion costs. We used macroeconomic scaling and temporal modelling approaches to project available cost information over gaps in taxa, space, and time, thereby producing a more complete estimate for the European Union economy. We identified that only 259 out of 13,331 (~ 1%) known invasive alien species have reported costs in the European Union. Using a conservative subset of highly reliable, observed, country-level cost entries from 49 species (totalling US$4.7 billion; 2017 value), combined with the establishment data of alien species within European Union member states, we projected unreported cost data for all member states. CONCLUSIONS: Our corrected estimate of observed costs was potentially 501% higher (US$28.0 billion) than currently recorded. Using future projections of current estimates, we also identified a substantial increase in costs and costly species (US$148.2 billion) by 2040. We urge that cost reporting be improved to clarify the economic impacts of greatest concern, concomitant with coordinated international action to prevent and mitigate the impacts of invasive alien species in the European Union and globally. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12302-023-00750-3.
- Keywords
- InvaCost, Invasion costs, Missing data, Monetary impacts, Projection, Temporal trends,
- Publication type
- Journal Article MeSH
Biological invasions are a major component of anthropogenic environmental change, incurring substantial economic costs across all sectors of society and ecosystems. There have been recent syntheses of costs for a number of countries using the newly compiled InvaCost database, but New Zealand-a country renowned for its approach to invasive species management-has so far not been examined. Here we analyse reported economic damage and management costs incurred by biological invasions in New Zealand from 1968 to 2020. In total, US$69 billion (NZ$97 billion) is currently reported over this ∼50-year period, with approximately US$9 billion of this considered highly reliable, observed (c.f. projected) costs. Most (82%) of these observed economic costs are associated with damage, with comparatively little invested in management (18%). Reported costs are increasing over time, with damage averaging US$120 million per year and exceeding management expenditure in all decades. Where specified, most reported costs are from terrestrial plants and animals, with damages principally borne by primary industries such as agriculture and forestry. Management costs are more often associated with interventions by authorities and stakeholders. Relative to other countries present in the InvaCost database, New Zealand was found to spend considerably more than expected from its Gross Domestic Product on pre- and post-invasion management costs. However, some known ecologically (c.f. economically) impactful invasive species are notably absent from estimated damage costs, and management costs are not reported for a number of game animals and agricultural pathogens. Given these gaps for known and potentially damaging invaders, we urge improved cost reporting at the national scale, including improving public accessibility through increased access and digitisation of records, particularly in overlooked socioeconomic sectors and habitats. This also further highlights the importance of investment in management to curtail future damages across all sectors.
- Keywords
- Biosecurity, Eradication, InvaCost, Invasive alien species, Island, Monetary impacts, Resource damages and losses, Socioeconomic sectors,
- MeSH
- Ecosystem * MeSH
- Plants MeSH
- Health Expenditures MeSH
- Introduced Species * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- New Zealand MeSH
Biological invasions by amphibian and reptile species (i.e. herpetofauna) are numerous and widespread, having caused severe impacts on ecosystems, the economy and human health. However, there remains no synthesised assessment of the economic costs of these invasions. Therefore, using the most comprehensive database on the economic costs of invasive alien species worldwide (InvaCost), we analyse the costs caused by invasive alien herpetofauna according to taxonomic, geographic, sectoral and temporal dimensions, as well as the types of these costs. The cost of invasive herpetofauna totaled at 17.0 billion US$ between 1986 and 2020, divided split into 6.3 billion US$ for amphibians, 10.4 billion US$ for reptiles and 334 million US$ for mixed classes. However, these costs were associated predominantly with only two species (brown tree snake Boiga irregularis and American bullfrog Lithobates catesbeianus), with 10.3 and 6.0 billion US$ in costs, respectively. Costs for the remaining 19 reported species were relatively minor (< 0.6 billion US$), and they were entirely unavailable for over 94% of known invasive herpetofauna worldwide. Also, costs were positively correlated with research effort, suggesting research biases towards well-known taxa. So far, costs have been dominated by predictions and extrapolations (79%), and thus empirical observations for impact were relatively scarce. The activity sector most affected by amphibians was authorities-stakeholders through management (> 99%), while for reptiles, impacts were reported mostly through damages to mixed sectors (65%). Geographically, Oceania and Pacific Islands recorded 63% of total costs, followed by Europe (35%) and North America (2%). Cost reports have generally increased over time but peaked between 2011 and 2015 for amphibians and 2006 to 2010 for reptiles. A greater effort in studying the costs of invasive herpetofauna is necessary for a more complete understanding of invasion impacts of these species. We emphasise the need for greater control and prevention policies concerning the spread of current and future invasive herpetofauna.
- MeSH
- Ecosystem * MeSH
- Humans MeSH
- Amphibians * MeSH
- Reptiles * MeSH
- Introduced Species MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- North America MeSH
Biological invasions are increasingly recognized ecological and economic threats to biodiversity and are projected to increase in the future. Introduced freshwater crayfish in particular are protruding invaders, exerting tremendous impacts on native biodiversity and ecosystem functioning, as exemplified by the North American spiny-cheek, signal and red swamp crayfish as well as the Australian common yabby. The marbled crayfish is among the most outstanding freshwater crayfish invaders due to its parthenogenetic reproduction combined with early maturation and high fecundity. As their introduced ranges expand, their sympatric populations become more frequent. The question of which species and under what circumstances will dominate in their introduced communities is of great interest to biodiversity conservation as it can offer valuable insights for understanding and prioritization of management efforts. In order to examine which of the aforementioned species may be more successful as an invader, we conducted a set of independent trials evaluating survival, growth, claw injury, and reproduction using single-species stocks (intraspecific interactions) and mixed stocks (interspecific interactions) of marbled crayfish vs. other crayfish invaders since the onset of exogenous feeding. In both single and mixed stocks, red swamp crayfish and yabby grew faster than marbled crayfish, while marbled crayfish were superior to both spiny-cheek and signal crayfish in terms of growth. With the exception of signal crayfish, the faster-growing species consistently reached a higher survival rate. The faster-growing species tended to negatively impair smaller counterparts by greater claw injury, delayed maturation, and reduced fecundity. Only marbled crayfish laid eggs as early as 14 weeks in this study, which is earlier than previously reported in the literature. Thus, the success of marbled crayfish among invasive crayfish is significantly driven by relatively fast growth as well as an early and frequent reproduction. These results shed light on how interactions between invasive populations can unfold when their expansion ranges overlap in the wild, thereby contributing to the knowledge base on the complex population dynamics between existing and emerging invasive species.
- Keywords
- animal release, biological invasion, pet trade, species interactions, sympatry,
- Publication type
- Journal Article MeSH