Nejvíce citovaný článek - PubMed ID 33777082
Molecular Evolution and Organization of Ribosomal DNA in the Hawkweed Tribe Hieraciinae (Cichorieae, Asteraceae)
BACKGROUND: The centromere is one of the key regions of the eukaryotic chromosome. While maintaining its function, centromeric DNA may differ among closely related species. Here, we explored the composition and structure of the pericentromeres (a chromosomal region including a functional centromere) of Hieracium alpinum (Asteraceae), a member of one of the most diverse genera in the plant kingdom. Previously, we identified a pericentromere-specific tandem repeat that made it possible to distinguish reads within the Oxford Nanopore library attributed to the pericentromeres, separating them into a discrete subset and allowing comparison of the repeatome composition of this subset with the remaining genome. RESULTS: We found that the main satellite DNA (satDNA) monomer forms long arrays of linear and block types in the pericentromeric heterochromatin of H. alpinum, and very often, single reads contain forward and reverse arrays and mirror each other. Beside the major, two new minor satDNA families were discovered. In addition to satDNAs, high amounts of LTR retrotransposons (TEs) with dominant of Tekay lineage, were detected in the pericentromeres. We were able to reconstruct four main TEs of the Ty3-gypsy and Ty1-copia superfamilies and compare their relative positions with satDNAs. The latter showed that the conserved domains (CDs) of the TE proteins are located between the newly discovered satDNAs, which appear to be parts of ancient Tekay LTRs that we were able to reconstruct. The dominant satDNA monomer shows a certain similarity to the GAG CD of the Angela retrotransposon. CONCLUSIONS: The species-specific pericentromeric arrays of the H. alpinum genome are heterogeneous, exhibiting both linear and block type structures. High amounts of forward and reverse arrays of the main satDNA monomer point to multiple microinversions that could be the main mechanism for rapid structural evolution stochastically creating the uniqueness of an individual pericentromeric structure. The traces of TEs insertion waves remain in pericentromeres for a long time, thus "keeping memories" of past genomic events. We counted at least four waves of TEs insertions. In pericentromeres, TEs particles can be transformed into satDNA, which constitutes a background pool of minor families that, under certain conditions, can replace the dominant one(s).
- Klíčová slova
- Asteraceae, Hieracium, Oxford Nanopore Technology sequencing, Pericentromeres, Plants, Satellite DNA, Transposable elements,
- Publikační typ
- časopisecké články MeSH
The classical model of concerted evolution states that hundreds to thousands of ribosomal DNA (rDNA) units undergo homogenization, making the multiple copies of the individual units more uniform across the genome than would be expected given mutation frequencies and gene redundancy. While the universality of this over 50-year-old model has been confirmed in a range of organisms, advanced high throughput sequencing techniques have also revealed that rDNA homogenization in many organisms is partial and, in rare cases, even apparently failing. The potential underpinning processes leading to unexpected intragenomic variation have been discussed in a number of studies, but a comprehensive understanding remains to be determined. In this work, we summarize information on variation or polymorphisms in rDNAs across a wide range of taxa amongst animals, fungi, plants, and protists. We discuss the definition and description of concerted evolution and describe whether incomplete concerted evolution of rDNAs predominantly affects coding or non-coding regions of rDNA units and if it leads to the formation of pseudogenes or not. We also discuss the factors contributing to rDNA variation, such as interspecific hybridization, meiotic cycles, rDNA expression status, genome size, and the activity of effector genes involved in genetic recombination, epigenetic modifications, and DNA editing. Finally, we argue that a combination of approaches is needed to target genetic and epigenetic phenomena influencing incomplete concerted evolution, to give a comprehensive understanding of the evolution and functional consequences of intragenomic variation in rDNA.
- MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- houby genetika MeSH
- molekulární evoluce MeSH
- mutace MeSH
- polymorfismus genetický * MeSH
- ribozomální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- ribozomální DNA MeSH
The ribosomal RNA genes (rDNA) are universal genome components with a housekeeping function, given the crucial role of ribosomal RNA in the synthesis of ribosomes and thus for life-on-Earth. Therefore, their genomic organization is of considerable interest for biologists, in general. Ribosomal RNA genes have also been largely used to establish phylogenetic relationships, and to identify allopolyploid or homoploid hybridization.Here, we demonstrate how high-throughput sequencing data, through graph clustering implemented in RepeatExplorer2 pipeline ( https://repeatexplorer-elixir.cerit-sc.cz/galaxy/ ), can be helpful to decipher the genomic organization of 5S rRNA genes. We show that the linear shapes of cluster graphs are reminiscent to the linked organization of 5S and 35S rDNA (L-type arrangement) while the circular graphs correspond to their separate arrangement (S-type). We further present a simplified protocol based on the paper by (Garcia et al., Front Plant Sci 11:41, 2020) about the use of graph clustering of 5S rDNA homoeologs (S-type) to identify hybridization events in the species history. We found that the graph complexity (i.e., graph circularity in this case) is related to ploidy and genome complexity, with diploids typically showing circular-shaped graphs while allopolyploids and other interspecific hybrids display more complex graphs, with usually two or more interconnected loops representing intergenic spacers. When a three-genomic comparative clustering analysis from a given hybrid (homoploid/allopolyploid) and its putative progenitor species (diploids) is performed, it is possible to identify the corresponding homoeologous 5S rRNA gene families, and to elucidate the contribution of each putative parental genome to the 5S rDNA pool of the hybrid. Thus, the analysis of 5S rDNA cluster graphs by RepeatExplorer, together with information coming from other sources (e.g., morphology, cytogenetics) is a complementary approach for the determination of allopolyploid or homoploid hybridization and even ancient introgression events.
- Klíčová slova
- 5S ribosomal RNA genes, Allopolyploid hybridization, Genomic analysis, Graph clustering, Homoploid hybridization, Introgression, Repeatome,
- MeSH
- fylogeneze MeSH
- genomika * MeSH
- geny rRNA MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 5S * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ribozomální DNA MeSH
- RNA ribozomální 5S * MeSH
Native American hawkweeds are mainly mountainous species that are distributed all over the New World. They are severely understudied with respect to their origin, colonization of the vast distribution area, and species relationships. Here, we attempt to reconstruct the evolutionary history of the group by applying seven molecular markers (plastid, nuclear ribosomal and low-copy genes). Phylogenetic analyses revealed that Chionoracium is a subgenus of the mainly Eurasian genus Hieracium, which originated from eastern European hawkweeds about 1.58-2.24 million years ago. Plastid DNA suggested a single origin of all Chionoracium species. They colonized the New World via Beringia and formed several distinct lineages in North America. Via one Central American lineage, the group colonized South America and radiated into more than a hundred species within about 0.8 million years, long after the closure of the Isthmus of Panama and the most recent uplift of the Andes. Despite some incongruences shown by different markers, most of them revealed the same crown groups of closely related taxa, which were, however, largely in conflict with traditional sectional classifications. We provide a basic framework for further elucidation of speciation patterns. A thorough taxonomic revision of Hieracium subgen. Chionoracium is recommended.
- Klíčová slova
- Chionoracium, Hieracium, Stenotheca, molecular dating, molecular markers, phylogenetic analysis,
- Publikační typ
- časopisecké články MeSH