Nejvíce citovaný článek - PubMed ID 33837760
Letter to the Editor: Significant mutation enrichment in inverted repeat sites of new SARS-CoV-2 strains
Nucleic acids are not only static carriers of genetic information but also play vital roles in controlling cellular lifecycles through their fascinating structural diversity [...].
- MeSH
- DNA * chemie metabolismus MeSH
- konformace nukleové kyseliny * MeSH
- lidé MeSH
- RNA * chemie metabolismus MeSH
- výpočetní biologie * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- úvodní články MeSH
- úvodníky MeSH
- Názvy látek
- DNA * MeSH
- RNA * MeSH
Non-B nucleic acids structures have arisen as key contributors to genetic variation in SARS-CoV-2. Herein, we investigated the presence of defining spike protein mutations falling within inverted repeats (IRs) for 18 SARS-CoV-2 variants, discussed the potential roles of G-quadruplexes (G4s) in SARS-CoV-2 biology, and identified potential pseudoknots within the SARS-CoV-2 genome. Surprisingly, there was a large variation in the number of defining spike protein mutations arising within IRs between variants and these were more likely to occur in the stem region of the predicted hairpin stem-loop secondary structure. Notably, mutations implicated in ACE2 binding and propagation (e.g., ΔH69/V70, N501Y, and D614G) were likely to occur within IRs, whilst mutations involved in antibody neutralization and reduced vaccine efficacy (e.g., T19R, ΔE156, ΔF157, R158G, and G446S) were rarely found within IRs. We also predicted that RNA pseudoknots could predominantly be found within, or next to, 29 mutations found in the SARS-CoV-2 spike protein. Finally, the Omicron variants BA.2, BA.4, BA.5, BA.2.12.1, and BA.2.75 appear to have lost two of the predicted G4-forming sequences found in other variants. These were found in nsp2 and the sequence complementary to the conserved stem-loop II-like motif (S2M) in the 3' untranslated region (UTR). Taken together, non-B nucleic acids structures likely play an integral role in SARS-CoV-2 evolution and genetic diversity.
- Klíčová slova
- G-quadruplex, SARS-CoV-2, adaptation, inverted repeats, mutation, pseudoknot, spike protein,
- MeSH
- 3' nepřekládaná oblast MeSH
- COVID-19 * genetika MeSH
- genomika MeSH
- glykoprotein S, koronavirus genetika MeSH
- lidé MeSH
- nukleové kyseliny * MeSH
- SARS-CoV-2 genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- glykoprotein S, koronavirus MeSH
- nukleové kyseliny * MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
Cruciforms occur when inverted repeat sequences in double-stranded DNA adopt intra-strand hairpins on opposing strands. Biophysical and molecular studies of these structures confirm their characterization as four-way junctions and have demonstrated that several factors influence their stability, including overall chromatin structure and DNA supercoiling. Here, we review our understanding of processes that influence the formation and stability of cruciforms in genomes, covering the range of sequences shown to have biological significance. It is challenging to accurately sequence repetitive DNA sequences, but recent advances in sequencing methods have deepened understanding about the amounts of inverted repeats in genomes from all forms of life. We highlight that, in the majority of genomes, inverted repeats are present in higher numbers than is expected from a random occurrence. It is, therefore, becoming clear that inverted repeats play important roles in regulating many aspects of DNA metabolism, including replication, gene expression, and recombination. Cruciforms are targets for many architectural and regulatory proteins, including topoisomerases, p53, Rif1, and others. Notably, some of these proteins can induce the formation of cruciform structures when they bind to DNA. Inverted repeat sequences also influence the evolution of genomes, and growing evidence highlights their significance in several human diseases, suggesting that the inverted repeat sequences and/or DNA cruciforms could be useful therapeutic targets in some cases.
- Klíčová slova
- DNA base sequence, DNA structure, DNA supercoiling, cruciform, epigenetics, genome stability, inverted repeat, replication, transcription,
- MeSH
- DNA genetika MeSH
- konformace nukleové kyseliny MeSH
- křížová struktura DNA MeSH
- lidé MeSH
- nukleové kyseliny * MeSH
- obrácené repetice MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- křížová struktura DNA MeSH
- nukleové kyseliny * MeSH