Nejvíce citovaný článek - PubMed ID 34001940
Outer membrane and phospholipid composition of the target membrane affect the antimicrobial potential of first- and second-generation lipophosphonoxins
Finding effective antibiotics against multi-resistant strains of bacteria has been a challenging race. Linker-Evolved-Group-Optimized-Lipophosphonoxins (LEGO-LPPOs) are small modular synthetic antibacterial compounds targeting the cytoplasmic membrane. Here we focused on understanding the reasons for the variable efficacy of selected LEGO-LPPOs (LEGO-1, LEGO-2, LEGO-3, and LEGO-4) differing in hydrophobic and linker module structure and length. LEGO-1-4 permeabilized cytoplasmic membrane of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli, LEGO-1 with the longest linker module being the most effective. Gram-positive bacteria were more sensitive to LEGO-LPPO action compared to Gram-negatives, which was manifested as a delayed membrane permeabilization, higher minimal inhibitory concentration and lower amount of LEGO-LPPO bound to the cells. Outer membrane permeability measurements and time-kill assay showed that presence of the intact outer membrane brought about reduced susceptibility of Gram-negatives. Using liposome leakage and in silico simulations, we showed that membranes with major content of phosphatidylethanolamine were more prone to LEGO-LPPO permeabilization. The proposed mechanism stems from an electrostatic repulsion between highly positively charged LEGO-1 molecules and positively charged amino groups of phosphatidylethanolamine which destabilizes the membrane. Collectively, these data suggest that LEGO-LPPO membrane activity is enhanced by presence of phosphatidylethanolamine but hindered by presence of intact outer membrane.
- MeSH
- antibakteriální látky * farmakologie chemie MeSH
- buněčná membrána metabolismus MeSH
- Escherichia coli metabolismus účinky léků MeSH
- fosfatidylethanolaminy * chemie metabolismus MeSH
- mikrobiální testy citlivosti * MeSH
- permeabilita buněčné membrány účinky léků MeSH
- Staphylococcus aureus účinky léků metabolismus MeSH
- vnější bakteriální membrána metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky * MeSH
- fosfatidylethanolaminy * MeSH
- phosphatidylethanolamine MeSH Prohlížeč
In the past few decades, society has faced rapid development and spreading of antimicrobial resistance due to antibiotic misuse and overuse and the immense adaptability of bacteria. Difficulties in obtaining effective antimicrobial molecules from natural sources challenged scientists to develop synthetic molecules with antimicrobial effect. We developed modular molecules named LEGO-Lipophosphonoxins (LEGO-LPPO) capable of inducing cytoplasmic membrane perforation. In this structure-activity relationship study we focused on the role of the LEGO-LPPO hydrophobic module directing the molecule insertion into the cytoplasmic membrane. We selected three LEGO-LPPO molecules named C9, C8 and C7 differing in the length of their hydrophobic chain and consisting of an alkenyl group containing one double bond. The molecule with the long hydrophobic chain (C9) was shown to be the most effective with the lowest MIC and highest perforation rate both in vivo and in vitro. We observed high antimicrobial activity against both G+ and G- bacteria with significant differences in LEGO-LPPOs mechanism of action on these two cell types. We observed a highly cooperative mechanism of LEGO-LPPO action on G- bacteria as well as on liposomes resembling G- bacteria. LEGO-LPPO action on G- bacteria was significantly slower compared to G+ bacteria suggesting the role of the outer membrane in affecting the LEGO-LPPOs perforation rate. This notion was supported by the higher sensitivity of the E. coli strain with a compromised outer membrane. Finally, we noted that the composition of the cytoplasmic membrane affects the activity of LEGO-LPPOs since the presence of phosphatidylethanolamine increases their membrane disrupting activity.
- Publikační typ
- časopisecké články MeSH
Fonticins are phage tail-like bacteriocins produced by the Gram-negative bacterium Pragia fontium from the family Budviciaceae. This bacterium produces contractile-type particles that adsorb on the surface of sensitive bacteria and penetrate the cell wall, probably during contraction, in a way similar to the type VI secretion system. We characterized the pore-forming activity of fonticins using both living cells and in vitro model membranes. Using a potassium leakage assay, we show that fonticins are able to permeabilize sensitive cells. On black lipid membranes, single-pore conductance is about 0.78 nS in 1 M NaCl and appears to be linearly dependent on the increasing molar strength of NaCl solution, which is a property of considerably large pores. In agreement with these findings, fonticins are not ion selective for Na+, K+, and Cl-. Polyethylene glycol 3350 (PEG 3350) molecules of about 3.5 nm in diameter can enter the fonticin pore lumen, whereas the larger molecules cannot pass the pore. The size of fonticin pores was confirmed by transmission electron microscopy. The terminal membrane-piercing complex of the fonticin tube probably creates a selective barrier restricting passage of macromolecules. IMPORTANCE Phage tail-like bacteriocins are now the subject of research as potent antibacterial agents due to their narrow host specificity and single-hit mode of action. In this work, we focused on the structure and mode of action of fonticins. According to some theories, related particles were initially adapted for passage of double-stranded DNA (dsDNA) molecules, but fonticins changed their function during the evolution; they are able to form large pores through the bacterial envelope of Gram-negative bacteria. As various pore-forming proteins are extensively used for nanopore sequencing and stochastic sensing, we decided to investigate the pore-forming properties of fonticin protein complexes on artificial lipid membranes. Our research revealed remarkable structural properties of these particles that may have a potential application as a nanodevice.
- Klíčová slova
- black lipid membranes, conductance, electric current, electron microscopy, fonticin, membrane pore formation, phage tail-like bacteriocins, single-pore conductance,
- MeSH
- bakteriociny * metabolismus MeSH
- buněčná membrána metabolismus MeSH
- chlorid sodný metabolismus MeSH
- Enterobacteriaceae MeSH
- Gammaproteobacteria MeSH
- lipidové dvojvrstvy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriociny * MeSH
- chlorid sodný MeSH
- lipidové dvojvrstvy * MeSH
The alarming rise of bacterial antibiotic resistance requires the development of new compounds. Such compounds, lipophosphonoxins (LPPOs), were previously reported to be active against numerous bacterial species, but serum albumins abolished their activity. Here we describe the synthesis and evaluation of novel antibacterial compounds termed LEGO-LPPOs, loosely based on LPPOs, consisting of a central linker module with two attached connector modules on either side. The connector modules are then decorated with polar and hydrophobic modules. We performed an extensive structure-activity relationship study by varying the length of the linker and hydrophobic modules. The best compounds were active against both Gram-negative and Gram-positive species including multiresistant strains and persisters. LEGO-LPPOs act by first depleting the membrane potential and then creating pores in the cytoplasmic membrane. Importantly, their efficacy is not affected by the presence of serum albumins. Low cytotoxicity and low propensity for resistance development demonstrate their potential for therapeutic use.
- MeSH
- albuminy MeSH
- antibakteriální látky * chemie MeSH
- buněčná membrána MeSH
- gramnegativní bakterie MeSH
- grampozitivní bakterie * MeSH
- mikrobiální testy citlivosti MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- albuminy MeSH
- antibakteriální látky * MeSH