Nejvíce citovaný článek - PubMed ID 34095283
Carp Edema Virus Infection Is Associated With Severe Metabolic Disturbance in Fish
Carp Edema Virus (CEV) has emerged as a viral threat to the sustainability of European pond fisheries, with water temperature and stress playing a crucial role in disease outbreaks. Here, we report on a natural CEV infection in overwintering common carp (Cyprinus carpio; n = 1,160) broodstock that began to manifest clinically at an unusually low water temperature. In the initial outbreak phase, young broodstock fish exhibited abnormal activity and shoaling at the pond edge. While the water temperature under a discontinuous thin ice layer was 2°C, no deaths were observed. The first fish examined, using standard molecular methods for virological diagnosis, tested negative for CEV. Despite showing clinical signs suggestive of CEV infection, there was no gross pathology except for an increased amount of gill mucus, suggesting that CEV molecular detection may be dependent on infection progression. A shift from a period of cold stress to warming pond water temperatures may have influenced the subsequent progression of the disease. Ongoing clinical signs affected a large part of the population, which remained lethargic and gathered close to the banks. Subsequent virological testing performed ca. 3 weeks after the outbreak and first observation of clinically diseased fish detected the CEV genogroup I agent. CEV-driven die-offs occurred gradually as water temperatures increased to 8°C, with mortalities continuing for ca. 1 month. Interestingly, Přerov scaly carp and Hungarian mirror carp M2 strains differed significantly in mortality rates, at 30 and 60%, respectively. We tested a novel virus detection method, based on loop-mediated isothermal amplification (LAMP) of primers targeting the CEV genogroup I p4A gene, for applicability in the field. Samples from moribund fish, cadavers, and pond water all tested positive, with samples positive using LAMP subsequently confirmed by qPCR. To summarize, our data suggest it may be challenging to detect CEV DNA in both the first carp showing signs and surviving carp; scaly and scaleless carp show differential susceptibility to CEV infection; very low water temperatures of 2-4°C permit CEV infection in common carp; the LAMP method is applicable for rapid on-site CEV detection in clinical and environmental samples.
INTRODUCTION: Carp edema virus (CEV) is a fish poxvirus that primarily infects the gills of common carp. CEV causes koi sleepy disease (KSD), which is highly contagious and can result in mortality of up to 100%. METHODS: In the present study, we analyzed the stress and immune responses during KSD in two strains of common carp with different resistance to CEV: susceptible koi and resistant Amur sazan. Experiments were performed at two temperatures: 12°C and 18°C. In the case of koi carp, we also analyzed the effect of supplementation of 0.6% NaCl into tank water, which prevents mortality of the CEV-infected fish (salt rescue model). RESULTS: We found that CEV-infected koi kept at 18°C had the highest viral load, which correlated with the most severe histopathological changes in the gills. CEV infection resulted in the activation of stress response reflected by the upregulated expression of genes involved in stress response in the stress axis organs and increased levels of cortisol and glucose in the blood plasma. These changes were the most pronounced in CEV-infected koi kept at 18°C. At both temperatures, the activation of antiviral immune response was observed in koi kept under freshwater and NaCl conditions upon CEV infection. Interestingly, a clear downregulation of the expression of adaptive immune genes was observed in CEV-infected koi kept under freshwater at 18°C. CONCLUSION: CEV induces a stress response and modulates adaptive immune response in koi, and this is correlated with the level of viral load and disease development.
- Klíčová slova
- CEV, carp edema virus, common carp, fish poxviruses, immunomodulation, koi sleepy disease, stress,
- MeSH
- chlorid sodný MeSH
- edém MeSH
- imunita MeSH
- infekce vyvolané poxviry * MeSH
- kapři * MeSH
- nemoci ryb * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorid sodný MeSH
In the present study, we describe a natural outbreak of carp edema virus disease (CEVD) in koi carp, concentrating on clinical manifestation, gross and microscopic pathology, immunological parameters, viral diagnostics, and phylogenetic analysis. Examination of white blood cell parameters showed increased monocyte and decreased lymphocyte counts in CEV-affected fish compared to healthy control fish. Regarding immune system functioning, the present work shows, for the first time, enhanced phagocytic activity in CEV-affected fish. Respiratory burst of phagocytes was strongly increased in diseased fish, the increase being attributed to an increased phagocyte count rather than enhancement of their metabolic activity. The present work also newly shows histopathological changes in the pancreatic tissue of diseased koi.
- Klíčová slova
- histology, immunology, koi sleepy disease, respiratory burst,
- MeSH
- edém MeSH
- fylogeneze MeSH
- infekce vyvolané poxviry * MeSH
- kapři * MeSH
- nemoci ryb * MeSH
- Poxviridae * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
Disease conditions that involve multiple predisposing or contributing factors, or manifest as low performance and/or low-level mortality, can pose a diagnostic challenge that requires an interdisciplinary approach. Reaching a diagnosis may also be limited by a lack of available clinical profile parameter reference ranges to discriminate healthy fish from those affected by specific disease conditions. Here, we describe our experience investigating poorly performing rainbow trout (Oncorhynchus mykiss) in an intensive recirculation aquaculture, where reaching a final diagnosis of nephrocalcinosis was not as straightforward as one would wish. To list the issues making the diagnosis difficult, it was necessary to consider the creeping onset of the problem. Further diagnostic steps needed to ensure success included obtaining comparative data for fish blood profiles and water quality from both test and control aquacultural systems, excluding infections with salmonid pathogenic agents and evaluating necropsy findings. Major events in the pathophysiology of nephrocalcinosis could be reconstructed as follows: aquatic environment hyperoxia and hypercapnia → blood hypercapnia → blood acid-base perturbation (respiratory acidosis) → metabolic compensation (blood bicarbonate elevation and kidney phosphate excretion) → a rise in blood pH → calcium phosphate precipitation and deposition in tissues. This case highlights the need to consider the interplay between water quality and fish health when diagnosing fish diseases and reaching causal diagnoses.
- Klíčová slova
- acid-base, aquaculture, blood acid-base balance, carbon dioxide, fish health, rainbow trout, water quality,
- Publikační typ
- časopisecké články MeSH