Nejvíce citovaný článek - PubMed ID 34193247
Swimming turn performance: the distinguishing factor in 1500 m world championship freestyle races?
Maximal athletic performance can be limited by various factors, including restricted respiratory function. These limitations can be mitigated through targeted respiratory muscle training, as supported by numerous studies. However, the full potential of respiratory training in competitive finswimming has not been fully investigated. This case study aims to evaluate the effects of eight-week respiratory muscle training (RMT) on performance variability during the underwater phases of a 200 m bi-fins race simulation in an elite finswimmer (current world record holder and multiple world championship medalist). Performance variability was assessed based on pre-test, inter-test, and post-test data. Each measurement included pulmonary function and swim performance evaluations. In this study, underwater performance parameters, such as distance, time, velocity, and number of kicks, were assessed using video analysis synchronized with race timing and evaluated using the Dartfish software. The swimmer followed a 28-day training program with an Airofit PRO™ respiratory trainer between tests, with daily sessions targeting both inspiratory and expiratory muscles. The training involved 6-10 min of targeted exercises per day. Significant improvements were observed in Wilcoxon's paired-sample test between the pre-test and post-test results in terms of underwater distance (p = 0.012; d = 1.26), underwater time (p = 0.012; d = 1.26), and number of underwater kicks (p = 0.043; d = 1.01), resulting in a 14.23% longer underwater distance, 14.08% longer underwater time, and 14.94% increase in underwater kicks. Despite the increased distance and time, underwater velocity remained stable, indicating improved underwater performance efficiency. Despite some improvements, it is not possible to conclude that respiratory muscle training (RMT) can contribute to improved finswimming performance during the underwater phases of a 200 m bi-fins race simulation in this particular athlete's case. Further research with a larger sample size is necessary to fully understand the impact of RMT on finswimming performance.
- Klíčová slova
- finswimming performance, respiratory muscle training, swim training, underwater phases, video analysis,
- Publikační typ
- časopisecké články MeSH
To permit the collection of quantitative data on start, turn and clean swimming performances in any swimming pool, the aims of the present study were to (1) validate a mobile in-field performance analysis system (PAS) against the Kistler starting block equipped with force plates and synchronized to a 2D camera system (KiSwim, Kistler, Winterthur, Switzerland), (2) assess the PAS's interrater reliability and (3) provide percentiles as reference values for elite junior and adult swimmers. Members of the Swiss junior and adult national swimming teams including medalists at Olympic Games, World and European Championships volunteered for the present study (n = 47; age: 17 ± 4 [range: 13-29] years; World Aquatics Points: 747 ± 100 [range: 527-994]). All start and turn trials were video-recorded and analyzed using two methods: PAS and KiSwim. The PAS involves one fixed view camera recording overwater start footage and a sport action camera that is moved underwater along the side of the pool perpendicular to the swimming lane on a 1.55 m long monostand. From a total of 25 parameters determined with the PAS, 16 are also measurable with the KiSwim, of which 7 parameters showed satisfactory validity (r = 0.95-1.00, p < 0.001, %-difference < 1%). Interrater reliability was determined for all 25 parameters of the PAS and reliability was accepted for 21 of those start, turn and swimming parameters (ICC = 0.78-1.00). The percentiles for all valid and reliable parameters provide reference values for assessment of start, turn and swimming performance for junior and adult national team swimmers. The in-field PAS provides a mobile method to assess start, turn and clean swimming performance with high validity and reliability. The analysis template and manual included in the present article aid the practical application of the PAS in research and development projects as well as academic works.
- Klíčová slova
- competitive swimming, elite athlete, junior, youth,
- MeSH
- audiovizuální záznam metody MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- plavání * fyziologie MeSH
- reprodukovatelnost výsledků MeSH
- sportovní výkon * fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: To investigate performance variation in all race sections, i.e., start, clean swimming, and turns, of elite short-course races for all swimming strokes and to determine the effect of performance variation on race results. METHODS: Comparing finalists and non-qualified swimmers, a total of 256 races of male swimmers (n = 128, age: 23.3 ± 3.1, FINA points: 876 ± 38) competing in the European short-course swimming championships were analyzed. The coefficient of variation (CV) and relative change in performance (Δ%) were used to compare intra-individual performance progression between rounds and inter-individual differences between performance levels using a linear mixed model. RESULTS: While most performance variables declined during the races (P < 0.005), performance was better maintained in 200 m compared to 100 m races, as well as in finalists compared to non-qualified swimmers. In 100 m races, Start Times improved between heats, semi-finals, and finals (P < 0.005) and contributed to the improved Split Times of Lap 1 in freestyle (P = 0.001, Δ = -1.09%), breaststroke (P < 0.001; Δ = -2.48%), and backstroke (P < 0.001; Δ = -1.72%). Swimmers increased stroke rate from heats/semi-finals to finals in freestyle (P = 0.015, Δ = 3.29%), breaststroke (P = 0.001, Δ = 6.91%), and backstroke (P = 0.005; Δ = 3.65%). Increases in stroke length and clean-swimming speed were only significant between rounds for breaststroke and backstroke (P < 0.005). In 200 m races, Total Time remained unchanged between rounds (P > 0.05), except for breaststroke (P = 0.008; CV = 0.7%; Δ = -0.59%). Start (P = 0.004; Δ = -1.72%) and Split Times (P = 0.009; Δ = -0.61%) only improved in butterfly. From the turn variables, OUT_5 m times improved towards the finals in breaststroke (P = 0.006; Δ = -1.51%) and butterfly (P = 0.016; Δ = -2.19%). No differences were observed for SR and SL, while clean-swimming speed improved between rounds in breaststroke only (P = 0.034; Δ = 0.96%). DISCUSSION: Performance of finalists progressed between rounds in 100 m but not 200 m races, most probably due to the absence of semi-finals. Progression in 100 m races was mainly attributed to improved Start and Split Times in Lap 1, while turn performances remained unchanged. Within round comparison showed higher performance maintenance in 200 m compared to 100 m events, which showed more pronounced positive pacing. Success of finalists was attributed to their overall higher performance level and superior progression between rounds.
- Klíčová slova
- competition analysis, kinematic analysis, pacing, race parameters, swimming,
- Publikační typ
- časopisecké články MeSH
Turn performances are important success factors for short-course races, and more consistent turn times may distinguish between higher and lower-ranked swimmers. Therefore, this study aimed to determine coefficients of variation (CV) and performance progressions (∆%) of turn performances. The eight finalists and eight fastest swimmers from the heats that did not qualify for the semi-finals, i.e., from 17th to 24th place, of the 100, 200, 400, and 800 (females only)/1500 m (males only) freestyle events at the 2019 European Short Course Championships were included, resulting in a total of 64 male (finalists: age: 22.3 ± 2.6, FINA points: 914 ± 31 vs. heats: age: 21.5 ± 3.1, FINA points: 838 ± 74.9) and 64 female swimmers (finalists: age: 22.9 ± 4.8, FINA points: 904 ± 24.5 vs. heats: age: 20.1 ± 3.6, FINA points: 800 ± 48). A linear mixed model was used to compare inter- and intra-individual performance variation. Interactions between CVs, ∆%, and mean values were analyzed using a two-way analysis of variance (ANOVA). The results showed impaired turn performances as the races progressed. Finalists showed faster turn section times than the eight fastest non-qualified swimmers from the heats (p < 0.001). Additionally, turn section times were faster for short-, i.e., 100 and 200 m, than middle- and long-distance races, i.e., 400 to 1500 m races (p < 0.001). Regarding variation in turn performance, finalists showed lower CVs and ∆% for all turn section times (0.74% and 1.49%) compared to non-qualified swimmers (0.91% and 1.90%, respectively). Similarly, long-distance events, i.e., 800/1500 m, showed lower mean CVs and higher mean ∆% (0.69% and 1.93%) than short-distance, i.e., 100 m events (0.93% and 1.39%, respectively). Regarding turn sections, the largest CV and ∆% were found 5 m before wall contact (0.70% and 1.45%) with lower CV and more consistent turn section times 5 m after wall contact (0.42% and 0.54%). Non-qualified swimmers should aim to match the superior turn performances and faster times of finalists in all turn sections. Both finalists and non-qualified swimmers should pay particular attention to maintaining high velocities when approaching the wall as the race progresses.
- Klíčová slova
- competition analysis, freestyle, performance, race analysis, swimming,
- MeSH
- analýza rozptylu MeSH
- dospělí MeSH
- kompetitivní chování * MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- plavání MeSH
- sportovní výkon * MeSH
- vysoká teplota MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH