Most cited article - PubMed ID 34207220
Estrogen Receptor Modulators in Viral Infections Such as SARS-CoV-2: Therapeutic Consequences
Immune checkpoints regulate the immune system response. Recent studies suggest that flavonoids, known as phytoestrogens, may inhibit the PD-1/PD-L1 axis. We explored the potential of estrogens and 17 Selective Estrogen Receptor Modulators (SERMs) as inhibiting ligands for immune checkpoint proteins (CTLA-4, PD-L1, PD-1, and CD80). Our docking studies revealed strong binding energy values for quinestrol, quercetin, and bazedoxifene, indicating their potential to inhibit PD-1 and CTLA-4. Quercetin and bazedoxifene, known to modulate EGFR and IL-6R alongside estrogen receptors, can influence the immune checkpoint functionality. We discuss the impact of SERMs on PD-1 and CTLA-4, suggesting that these SERMs could have therapeutic effects through immune checkpoint inhibition. This study highlights the potential of SERMs as inhibitory ligands for immune checkpoint proteins, emphasizing the importance of considering PD-1 and CTLA-4 inhibition when evaluating SERMs as therapeutic agents. Our findings open new avenues for cancer immunotherapy by exploring the interaction between various SERMs and immune checkpoint pathways.
- MeSH
- CTLA-4 Antigen MeSH
- B7-H1 Antigen MeSH
- Programmed Cell Death 1 Receptor MeSH
- Immunotherapy MeSH
- Humans MeSH
- Estrogen Receptor Modulators MeSH
- Neoplasms * therapy MeSH
- Immune Checkpoint Proteins * MeSH
- Quercetin MeSH
- Selective Estrogen Receptor Modulators pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- CTLA-4 Antigen MeSH
- B7-H1 Antigen MeSH
- Programmed Cell Death 1 Receptor MeSH
- Estrogen Receptor Modulators MeSH
- Immune Checkpoint Proteins * MeSH
- Quercetin MeSH
- Selective Estrogen Receptor Modulators MeSH
Recent evidence indicates that targeting IL-6 provides broad therapeutic approaches to several diseases. In patients with cancer, autoimmune diseases, severe respiratory infections [e.g. coronavirus disease 2019 (COVID-19)] and wound healing, IL-6 plays a critical role in modulating the systemic and local microenvironment. Elevated serum levels of IL-6 interfere with the systemic immune response and are associated with disease progression and prognosis. As already noted, monoclonal antibodies blocking either IL-6 or binding of IL-6 to receptors have been used/tested successfully in the treatment of rheumatoid arthritis, many cancer types, and COVID-19. Therefore, in the present review, we compare the impact of IL-6 and anti-IL-6 therapy to demonstrate common (pathological) features of the studied diseases such as formation of granulation tissue with the presence of myofibroblasts and deposition of new extracellular matrix. We also discuss abnormal activation of other wound-healing-related pathways that have been implicated in autoimmune disorders, cancer or COVID-19.
- Keywords
- Cancer stroma, Granulation tissue, IL-6, Inflammation, Myofibroblast, Peripheral nerve injury, Rheumatoid arthritis, SARS-CoV-2, Wound healing,
- MeSH
- Autoimmunity MeSH
- Autoimmune Diseases * drug therapy MeSH
- COVID-19 * MeSH
- Wound Healing MeSH
- Humans MeSH
- Tumor Microenvironment MeSH
- Neoplasms * drug therapy MeSH
- Inflammation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The coronavirus disease 2019 (COVID-19) pandemic has created unprecedented challenges worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and has a complex interaction with the immune system, including growing evidence of sex-specific differences in the immune response. Sex-disaggregated analyses of epidemiological data indicate that males experience more severe symptoms and suffer higher mortality from COVID-19 than females. Many behavioural risk factors and biological factors may contribute to the different immune response. This review examines the immune response to SARS-CoV-2 infection in the context of sex, with emphasis on potential biological mechanisms explaining differences in clinical outcomes. Understanding sex differences in the pathophysiology of SARS-CoV-2 infection will help promote the development of specific strategies to manage the disease.
- Keywords
- COVID-19, SARS-CoV-2, gender, immune system, sex, sex hormones,
- MeSH
- COVID-19 * MeSH
- Immunity MeSH
- Humans MeSH
- Pandemics MeSH
- Risk Factors MeSH
- SARS-CoV-2 MeSH
- Sex Factors MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH