Nejvíce citovaný článek - PubMed ID 34388227
A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction
The independent component analysis (ICA) based methods are among the most prevalent techniques used for non-invasive fetal electrocardiogram (NI-fECG) processing. Often, these methods are combined with other methods, such adaptive algorithms. However, there are many variants of the ICA methods and it is not clear which one is the most suitable for this task. The goal of this study is to test and objectively evaluate 11 variants of ICA methods combined with an adaptive fast transversal filter (FTF) for the purpose of extracting the NI-fECG. The methods were tested on two datasets, Labour dataset and Pregnancy dataset, which contained real records obtained during clinical practice. The efficiency of the methods was evaluated from the perspective of determining the accuracy of detection of QRS complexes through the parameters of accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1). The best results were achieved with a combination of FastICA and FTF, which yielded mean values of ACC = 83.72%, SE = 92.13%, PPV = 90.16%, and F1 = 91.14%. Time of calculation was also taken into consideration in the methods. Although FastICA was ranked to be the sixth fastest with its mean computation time of 0.452 s, it had the best ratio of performance and speed. The combination of FastICA and adaptive FTF filter turned out to be very promising. In addition, such device would require signals acquired from the abdominal area only; no need to acquire reference signal from the mother's chest.
On the outbreak of the global COVID-19 pandemic, high-risk and vulnerable groups in the population were at particular risk of severe disease progression. Pregnant women were one of these groups. The infectious disease endangered not only the physical health of pregnant women, but also their mental well-being. Improving the mental health of pregnant women and reducing their risk of an infectious disease could be achieved by using remote home monitoring solutions. These would allow the health of the mother and fetus to be monitored from the comfort of their home, a reduction in the number of physical visits to the doctor and thereby eliminate the need for the mother to venture into high-risk public places. The most commonly used technique in clinical practice, cardiotocography, suffers from low specificity and requires skilled personnel for the examination. For that and due to the intermittent and active nature of its measurements, it is inappropriate for continuous home monitoring. The pandemic has demonstrated that the future lies in accurate remote monitoring and it is therefore vital to search for an option for fetal monitoring based on state-of-the-art technology that would provide a safe, accurate, and reliable information regarding fetal and maternal health state. In this paper, we thus provide a technical and critical review of the latest literature and on this topic to provide the readers the insights to the applications and future directions in fetal monitoring. We extensively discuss the remaining challenges and obstacles in future research and in developing the fetal monitoring in the new era of Fetal monitoring 4.0, based on the pillars of Healthcare 4.0.
- Klíčová slova
- COVID-19, Fetal monitoring 4.0, Fetal telemonitoring, Healthcare 4.0, Non-invasive fetal electrocardiography (NI-fECG), Remote fetal monitoring, Smart healthcare,
- MeSH
- COVID-19 * epidemiologie prevence a kontrola MeSH
- kardiotokografie metody MeSH
- lidé MeSH
- monitorování plodu MeSH
- pandemie * prevence a kontrola MeSH
- prenatální péče MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This paper introduces a novel algorithm for effective and accurate extraction of non-invasive fetal electrocardiogram (NI-fECG). In NI-fECG based monitoring, the useful signal is measured along with other signals generated by the pregnant women's body, especially maternal electrocardiogram (mECG). These signals are more distinct in magnitude and overlap in time and frequency domains, making the fECG extraction extremely challenging. The proposed extraction method combines the Grey wolf algorithm (GWO) with sequential analysis (SA). This innovative combination, forming the GWO-SA method, optimises the parameters required to create a template that matches the mECG, which leads to an accurate elimination of the said signal from the input composite signal. The extraction system was tested on two databases consisting of real signals, namely, Labour and Pregnancy. The databases used to test the algorithms are available on a server at the generalist repositories (figshare) integrated with Matonia et al. (Sci Data 7(1):1-14, 2020). The results show that the proposed method extracts the fetal ECG signal with an outstanding efficacy. The efficacy of the results was evaluated based on accurate detection of the fQRS complexes. The parameters used to evaluate are as follows: accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and F1 score. Due to the stochastic nature of the GWO algorithm, ten individual runs were performed for each record in the two databases to assure stability as well as repeatability. Using these parameters, for the Labour dataset, we achieved an average ACC of 94.60%, F1 of 96.82%, SE of 97.49%, and PPV of 98.96%. For the Pregnancy database, we achieved an average ACC of 95.66%, F1 of 97.44%, SE of 98.07%, and PPV of 97.44%. The obtained results show that the fHR related parameters were determined accurately for most of the records, outperforming the other state-of-the-art approaches. The poorer quality of certain signals have caused deviation from the estimated fHR for certain records in the databases. The proposed algorithm is compared with certain well established algorithms, and has proven to be accurate in its fECG extractions.
- MeSH
- algoritmy MeSH
- databáze faktografické MeSH
- elektrokardiografie metody MeSH
- lidé MeSH
- monitorování plodu * metody MeSH
- počítačové zpracování signálu * MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters of different hybrid systems used for non-invasive fetal electrocardiogram (fECG) extraction. The tested hybrid systems consist of two different blocks, first for maternal component estimation and second, so-called adaptive block, for maternal component suppression by means of an adaptive algorithm (AA). Herein, we tested and optimized four different AAs: Adaptive Linear Neuron (ADALINE), Standard Least Mean Squares (LMS), Sign-Error LMS, Standard Recursive Least Squares (RLS), and Fast Transversal Filter (FTF). The main criterion for optimal parameter selection was the F1 parameter. We conducted experiments using real signals from publicly available databases and those acquired by our own measurements. Our optimization method enabled us to find the corresponding optimal settings for individual adaptive block of all tested hybrid systems which improves achieved results. These improvements in turn could lead to a more accurate fetal heart rate monitoring and detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to find optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing and analysis, opening new diagnostic possibilities of non-invasive fetal electrocardiography.
- MeSH
- algoritmy MeSH
- elektrokardiografie * metody MeSH
- lidé MeSH
- metoda nejmenších čtverců MeSH
- monitorování plodu metody MeSH
- plod fyziologie MeSH
- počítačové zpracování signálu * MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH