Nejvíce citovaný článek - PubMed ID 34428934
In vivo Molecular Signatures of Cervical Spinal Cord Pathology in Degenerative Compression
Study DesignSystematic review.ObjectivesThe pre-symptomatic state of Degenerative Cervical Myelopathy (DCM), wherein degenerative changes and spinal cord compression are seen without clinical findings, is poorly understood and inconsistently categorised. Clear identification may elucidate the temporality of DCM development. Therefore, a systematic assessment was undertaken of current terminology for pre-DCM states, with the objective of standardising definitions and informing an AO Spine expert position statement.MethodsMedline and Embase were searched for all studies on asymptomatic spinal compression or clinical findings preceding DCM, returning 3585 studies. After screening, 96 studies were included in the final analysis. The terminology used for pre-DCM states and their definitions were extracted, along with their frequencies or speciality/country of author in the literature.ResultsMultiple terms were used to represent pre-DCM stages, including "asymptomatic" (86 studies), "non-myelopathic" (26 studies), "without myelopathy" (15 studies), "pre-symptomatic" (9 studies) and "sub-clinical" (7 studies). "asymptomatic" was associated with the greatest inconsistency. Some defined this as patients with radiological signs of spinal degeneration with/without spinal cord compression but no clinical signs of myelopathy, whereas others used the term synonymously with healthy controls. This inconsistency is particularly challenging in clinical studies in which DCM patients are compared to those with pre-DCM states and/or healthy volunteers.ConclusionThere is substantial inconsistency in the terms used to describe pre-DCM states. There is no clear relationship between the terms used and the country or speciality of the main author. Standardised definitions for these disease states should be agreed and used in future studies.
The spinal cord plays a pivotal role in the central nervous system, providing communication between the brain and the body and containing critical motor and sensory networks. Recent advancements in spinal cord MRI data acquisition and image analysis have shown a potential to improve the diagnostics, prognosis, and management of a variety of pathological conditions. In this review, we first discuss the significance of standardized spinal cord MRI acquisition protocol in multi-center and multi-manufacturer studies. Then, we cover open-access spinal cord MRI datasets, which are important for reproducible science and validation of new methods. Finally, we elaborate on the recent advances in spinal cord MRI data analysis techniques implemented in the open-source software package Spinal Cord Toolbox (SCT).
- Klíčová slova
- quantitative magnetic resonance imaging, reproducibility, spinal cord, spinal cord toolbox,
- MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mícha * diagnostické zobrazování MeSH
- počítačové zpracování obrazu metody MeSH
- reprodukovatelnost výsledků MeSH
- software * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Degenerative cervical myelopathy (DCM) represents the final consequence of a series of degenerative changes in the cervical spine, resulting in cervical spinal canal stenosis and mechanical stress on the cervical spinal cord. This process leads to subsequent pathophysiological processes in the spinal cord tissues. The primary mechanism of injury is degenerative compression of the cervical spinal cord, detectable by magnetic resonance imaging (MRI), serving as a hallmark for diagnosing DCM. However, the relative resilience of the cervical spinal cord to mechanical compression leads to clinical-radiological discordance, i.e., some individuals may exhibit MRI findings of DCC without the clinical signs and symptoms of myelopathy. This degenerative compression of the cervical spinal cord without clinical signs of myelopathy, potentially serving as a precursor to the development of DCM, remains a somewhat controversial topic. In this review article, we elaborate on and provide commentary on the terminology, epidemiology, natural course, diagnosis, predictive value, risks, and practical management of this condition-all of which are subjects of ongoing debate.
Degenerative spinal cord compression is a frequent pathological condition with increasing prevalence throughout aging. Initial non-myelopathic cervical spinal cord compression (NMDC) might progress over time into potentially irreversible degenerative cervical myelopathy (DCM). While quantitative MRI (qMRI) techniques demonstrated the ability to depict intrinsic tissue properties, longitudinal in-vivo biomarkers to identify NMDC patients who will eventually develop DCM are still missing. Thus, we aim to review the ability of qMRI techniques (such as diffusion MRI, diffusion tensor imaging (DTI), magnetization transfer (MT) imaging, and magnetic resonance spectroscopy (1H-MRS)) to serve as prognostic markers in NMDC. While DTI in NMDC patients consistently detected lower fractional anisotropy and higher mean diffusivity at compressed levels, caused by demyelination and axonal injury, MT and 1H-MRS, along with advanced and tract-specific diffusion MRI, recently revealed microstructural alterations, also rostrally pointing to Wallerian degeneration. Recent studies also disclosed a significant relationship between microstructural damage and functional deficits, as assessed by qMRI and electrophysiology, respectively. Thus, tract-specific qMRI, in combination with electrophysiology, critically extends our understanding of the underlying pathophysiology of degenerative spinal cord compression and may provide predictive markers of DCM development for accurate patient management. However, the prognostic value must be validated in longitudinal studies.
BACKGROUND: Degenerative cervical spinal cord compression is becoming increasingly prevalent, yet the MRI criteria that define compression are vague, and vary between studies. This contribution addresses the detection of compression by means of the Spinal Cord Toolbox (SCT) and assesses the variability of the morphometric parameters extracted with it. METHODS: Prospective cross-sectional study. Two types of MRI examination, 3 and 1.5 T, were performed on 66 healthy controls and 118 participants with cervical spinal cord compression. Morphometric parameters from 3T MRI obtained by Spinal Cord Toolbox (cross-sectional area, solidity, compressive ratio, torsion) were combined in multivariate logistic regression models with the outcome (binary dependent variable) being the presence of compression determined by two radiologists. Inter-trial (between 3 and 1.5 T) and inter-rater (three expert raters and SCT) variability of morphometric parameters were assessed in a subset of 35 controls and 30 participants with compression. RESULTS: The logistic model combining compressive ratio, cross-sectional area, solidity, torsion and one binary indicator, whether or not the compression was set at level C6/7, demonstrated outstanding compression detection (area under curve =0.947). The single best cut-off for predicted probability calculated using a multiple regression equation was 0.451, with a sensitivity of 87.3% and a specificity of 90.2%. The inter-trial variability was better in Spinal Cord Toolbox (intraclass correlation coefficient was 0.858 for compressive ratio and 0.735 for cross-sectional area) compared to expert raters (mean coefficient for three expert raters was 0.722 for compressive ratio and 0.486 for cross-sectional area). The analysis of inter-rater variability demonstrated general agreement between SCT and three expert raters, as the correlations between SCT and raters were generally similar to those of the raters between one another. CONCLUSIONS: This study demonstrates successful semi-automated compression detection based on four parameters. The inter-trial variability of parameters established through two MRI examinations was conclusively better for Spinal Cord Toolbox compared with that of three experts' manual ratings.
- Klíčová slova
- Spinal cord compression (SCC), cervical spinal cord, magnetic resonance imaging (MRI), myelopathy, reproducibility,
- Publikační typ
- časopisecké články MeSH