Nejvíce citovaný článek - PubMed ID 34576205
Oxidative Stress, Testicular Inflammatory Pathways, and Male Reproduction
Reactive nitrogen species (RNS), like reactive oxygen species (ROS), are useful for sustaining reproductive processes such as cell signaling, the regulation of hormonal biosynthesis, sperm capacitation, hyperactivation, and acrosome reaction. However, endogenous levels of RNS beyond physiological limits can impair fertility by disrupting testicular functions, reducing gonadotropin production, and compromising semen quality. Excessive RNS levels cause a variety of abnormalities in germ cells and gametes, particularly in the membranes and deoxyribonucleic acid (DNA), and severely impair the maturation and fertilization processes. Cell fragmentation and developmental blockage, usually at the two-cell stage, are also connected with imbalanced redox status of the embryo during its early developmental stage. Since high RNS levels are closely linked to male infertility and conventional semen analyses are not reliable predictors of the assisted reproductive technology (ART) outcomes for such infertility cases, it is critical to develop novel ways of assessing and treating oxidative and/or nitrosative stress-mediated male infertility. This review aims to explicate the physiological and pathological roles of RNS and their relationship with male reproduction.
- Klíčová slova
- male infertility, oxidative stress, reactive nitrogen species, reactive oxygen species, sperm DNA fragmentation,
- MeSH
- analýza spermatu MeSH
- DNA metabolismus MeSH
- lidé MeSH
- mužská infertilita * metabolismus MeSH
- oxidační stres fyziologie MeSH
- reaktivní formy dusíku * metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rozmnožování fyziologie MeSH
- sperma metabolismus MeSH
- spermie metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- reaktivní formy dusíku * MeSH
- reaktivní formy kyslíku MeSH
The pathophysiology of male infertility involves various interlinked endogenous pathways. About 50% of the cases of infertility in men are idiopathic, and oxidative stress (OS) reportedly serves as a central mechanism in impairing male fertility parameters. The endogenous antioxidant system operates to conserve the seminal redox homeostasis required for normal male reproduction. OS strikes when a generation of seminal reactive oxygen species (ROS) overwhelms endogenous antioxidant capacity. Thus, antioxidant treatment finds remarkable relevance in the case of idiopathic male infertility or subfertility. However, due to lack of proper detection of OS in male infertility, use of antioxidant(s) in some cases may be arbitrary or lead to overuse and induction of 'reductive stress'. Moreover, inflammation is closely linked to OS and may establish a vicious loop that is capable of disruption to male reproductive tissues. The result is exaggeration of cellular damage and disruption of male reproductive tissues. Therefore, limitations of antioxidant therapy in treating male infertility are the failure in the selection of specific treatments targeting inflammation and OS simultaneously, two of the core mechanisms of male infertility. The present review aims to elucidate the antioxidant paradox in male infertility treatment, from the viewpoints of both induction of reductive stress as well as overlooking the inflammatory consequences.
- Klíčová slova
- antioxidants, inflammation, male infertility, oxidative stress, reductive stress,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH