Most cited article - PubMed ID 34726799
Acid-Catalyzed RNA-Oligomerization from 3',5'-cGMP
Because of their unique proton-conductivity, chains of phosphoric acid molecules are excellent proton-transfer catalysts. Here we demonstrate that this property could have been exploited for the prebiotic synthesis of the first oligopeptide sequences on our planet. Our results suggest that drying highly diluted solutions containing amino acids (like glycine, histidine and arginine) and phosphates in comparable concentrations at elevated temperatures (ca. 80 °C) in an acidic environment could lead to the accumulation of amino acid:phosphoric acid crystalline salts. Subsequent heating of these materials at 100 °C for 1-3 days results in the formation of oligoglycines consisting of up to 24 monomeric units, while arginine and histidine form shorter oligomers (up to trimers) only. Overall, our results suggest that combining the catalytic effect of phosphate chains with the crystalline order present in amino acid:phosphoric acid salts represents a viable solution that could be utilized to generate the first oligopeptide sequences in a mild acidic hydrothermal field scenario. Further, we propose that crystallization could help overcoming cyclic oligomer formation that is a generally known bottleneck of prebiotic polymerization processes preventing further chain growth.
- Publication type
- Journal Article MeSH
Accumulation and selection of nucleotides is one of the most challenging problems surrounding the origin of the first RNA molecules on our planet. In the current work we propose that guanosine 3',5' cyclic monophosphate could selectively crystallize upon evaporation of an acidic prebiotic pool containing various other nucleotides. The conditions of the evaporative crystallization are fully compatible with the subsequent acid catalyzed polymerization of this cyclic nucleotide reported in earlier studies and may be relevant in a broad range of possible prebiotic environments. Albeit cytidine 3',5' cyclic monophosphate has the ability to selectively accumulate under the same conditions, its crystal structure is not likely to support polymer formation.
- Keywords
- Biochemistry, Biological sciences, Natural sciences,
- Publication type
- Journal Article MeSH
Template-free nonenzymatic polymerization of 3',5' cyclic nucleotides is an emerging topic of the origin of life research. In the last ten years, a number of papers have been published addressing various aspects of this process. These works evoked a vivid discussion among scientists working in the field of prebiotic chemistry. The aim of the current review is to answer the most frequently raised questions related to the detection and characterization of oligomeric products as well as to the geological context of this chemistry.
- Keywords
- cyclic nucleotides, polymerization, prebiotic chemistry,
- Publication type
- Journal Article MeSH
- Review MeSH