Most cited article - PubMed ID 34846870
Fast Fluoroalkylation of Proteins Uncovers the Structure and Dynamics of Biological Macromolecules
Fast Photochemical Oxidation of Proteins (FPOP) is a protein footprinting method utilizing hydroxyl radicals to provide valuable information on the solvent-accessible surface area. The extensive number of oxidative modifications that are created by FPOP is both advantageous, leading to great spatial resolution, and challenging, increasing the complexity of data processing. The precise localization of the modification together with the appropriate reproducibility is crucial to obtain relevant structural information. In this paper, we propose a novel approach combining validated spectral libraries together with utilizing DIA data. First, the DDA data searched by FragPipe are subsequently validated using Skyline software to form a spectral library. This library is then matched against the DIA data to filter out nonrepresentative IDs. In comparison with FPOP data processing using only a search engine followed by generally applied filtration steps, the manually validated spectral library offers higher confidence in identifications and increased spatial resolution. Furthermore, the reproducibility of quantification was compared for DIA, DDA, and MS-only acquisition modes on timsTOF SCP. Comparison of coefficients of variation (CV) showed that the DIA and MS acquisition modes exhibit significantly better reproducibility in quantification (CV medians 0.1233 and 0.1494, respectively) compared to the DDA mode (CV median 0.2104).
- MeSH
- Photochemical Processes * MeSH
- Hydroxyl Radical chemistry analysis MeSH
- Oxidation-Reduction * MeSH
- Proteins * chemistry analysis MeSH
- Software MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Hydroxyl Radical MeSH
- Proteins * MeSH
Covalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues. This report further demonstrates the benefits of FFAP as a new method for structural characterization of therapeutic antibodies and interaction interfaces of antigen-antibody complexes. The results obtained from human trastuzumab and its complex with human epidermal growth factor receptor 2 (HER2) correlate well with previously published structural data and demonstrate the potential of FFAP in structural biology.
- MeSH
- Alkylation MeSH
- Protein Footprinting methods MeSH
- Halogenation MeSH
- Antigen-Antibody Complex chemistry MeSH
- Humans MeSH
- Epitope Mapping * methods MeSH
- Antibodies, Monoclonal chemistry immunology MeSH
- Receptor, ErbB-2 * chemistry immunology MeSH
- Trastuzumab * chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1 (Tg1) domains with an unusual disulfide pattern. Recombinant IrThy was found to inhibit human host-derived cathepsin proteases with a high specificity for cathepsins V, K, and L among a wide range of screened cathepsins exhibiting diverse endo- and exopeptidase activities. Both Tg1 domains displayed inhibitory activities, but with distinct specificity profiles. We determined the spatial structure of one of the Tg1 domains by solution NMR spectroscopy and described its reactive center to elucidate the unique inhibitory specificity. Furthermore, we found that the inhibitory potency of IrThy was modulated in a complex manner by various glycosaminoglycans from host tissues. IrThy was additionally regulated by pH and proteolytic degradation. This study provides a comprehensive structure-function characterization of IrThy-the first investigated thyropin of parasite origin-and suggests its potential role in host-parasite interactions at the tick bite site.
- Keywords
- cathepsin, cysteine protease, parasite, protease inhibitor, protein structure, saliva, thyropin, tick,
- MeSH
- Cysteine MeSH
- Glycosaminoglycans MeSH
- Cathepsins metabolism MeSH
- Ixodes * metabolism MeSH
- Humans MeSH
- Magnetic Resonance Spectroscopy MeSH
- Saliva * metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cysteine MeSH
- Glycosaminoglycans MeSH
- Cathepsins MeSH
Fast Photochemical Oxidation of Proteins (FPOP) is a promising technique for studying protein structure and dynamics. The quality of insight provided by FPOP depends on the reliability of the determination of the modification site. This study investigates the performance of two search engines, Mascot and PEAKS, for the data processing of FPOP analyses. Comparison of Mascot and PEAKS of the hemoglobin--haptoglobin Bruker timsTOF data set (PXD021621) revealed greater consistency in the Mascot identification of modified peptides, with around 26% of the IDs being mutual for all three replicates, compared to approximately 22% for PEAKS. The intersection between Mascot and PEAKS results revealed a limited number (31%) of shared modified peptides. Principal Component Analysis (PCA) using the peptide-spectrum match (PSM) score, site probability, and peptide intensity was applied to evaluate the results, and the analyses revealed distinct clusters of modified peptides. Mascot showed the ability to assess confident site determination, even with lower PSM scores. However, high PSM scores from PEAKS did not guarantee a reliable determination of the modification site. Fragmentation coverage of the modification position played a crucial role in Mascot assignments, while the AScore localizations from PEAKS often become ambiguous because the software employs MS/MS merging.
- Keywords
- FPOP, search engine, structural proteomics,
- MeSH
- Peptides * analysis MeSH
- Proteins analysis MeSH
- Reproducibility of Results MeSH
- Software MeSH
- Tandem Mass Spectrometry * methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Peptides * MeSH
- Proteins MeSH
Protein radical labeling, like fast photochemical oxidation of proteins (FPOP), coupled to a top-down mass spectrometry (MS) analysis offers an alternative analytical method for probing protein structure or protein interaction with other biomolecules, for instance, proteins and DNA. However, with the increasing mass of studied analytes, the MS/MS spectra become complex and exhibit a low signal-to-noise ratio. Nevertheless, these difficulties may be overcome by protein isotope depletion. Thus, we aimed to use protein isotope depletion to analyze FPOP-oxidized samples by top-down MS analysis. For this purpose, we prepared isotopically natural (IN) and depleted (ID) forms of the FOXO4 DNA binding domain (FOXO4-DBD) and studied the protein-DNA interaction interface with double-stranded DNA, the insulin response element (IRE), after exposing the complex to hydroxyl radicals. As shown by comparing tandem mass spectra of natural and depleted proteins, the ID form increased the signal-to-noise ratio of useful fragment ions, thereby enhancing the sequence coverage by more than 19%. This improvement in the detection of fragment ions enabled us to detect 22 more oxidized residues in the ID samples than in the IN sample. Moreover, less common modifications were detected in the ID sample, including the formation of ketones and lysine carbonylation. Given the higher quality of ID top-down MSMS data set, these results provide more detailed information on the complex formation between transcription factors and DNA-response elements. Therefore, our study highlights the benefits of isotopic depletion for quantitative top-down proteomics. Data are available via ProteomeXchange with the identifier PXD044447.
- MeSH
- DNA MeSH
- Ions MeSH
- Isotopes MeSH
- Proteins * analysis MeSH
- Tandem Mass Spectrometry * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Ions MeSH
- Isotopes MeSH
- Proteins * MeSH
Two-dimensional mass spectrometry (2D MS) is a multiplexed tandem mass spectrometry method that does not rely on ion isolation to correlate the precursor and fragment ions. On a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), 2D MS instead uses the modulation of precursor ion radii inside the ICR cell before fragmentation and yields 2D mass spectra that show the fragmentation patterns of all the analytes. In this study, we perform 2D MS for the first time with quadrupolar detection in a dynamically harmonized ICR cell. We discuss the advantages of quadrupolar detection in 2D MS and how we adapted existing data processing techniques for accurate frequency-to-mass conversion. We apply 2D MS with quadrupolar detection to the top-down analysis of covalently labeled ubiquitin with ECD fragmentation, and we develop a workflow for label-free relative quantification of biomolecule isoforms in 2D MS.
- MeSH
- Cyclotrons MeSH
- Fourier Analysis MeSH
- Proteomics * methods MeSH
- Tandem Mass Spectrometry * methods MeSH
- Ubiquitin MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ubiquitin MeSH
Fast photochemical oxidation of proteins (FPOP) footprinting is a structural mass spectrometry method that maps proteins by fast and irreversible chemical reactions. The position of oxidative modification reflects solvent accessibility and site reactivity and thus provides information about protein conformation, structural dynamics, and interactions. Bottom-up mass spectrometry is an established standard method to analyze FPOP samples. In the bottom-up approach, all forms of the protein are digested together by a protease of choice, which results in a mixture of peptides from various subpopulations of proteins with varying degrees of photochemical oxidation. Here, we investigate the possibility to analyze a specifically selected population of only singly oxidized proteins. This requires utilization of more specific top-down mass spectrometry approaches. The key element of any top-down experiment is the selection of a suitable method of ion isolation, excitation, and fragmentation. Here, we employ and compare collision-induced dissociation, electron-transfer dissociation, and electron-capture dissociation combined with multi-continuous accumulation of selected ions. A singly oxidized subpopulation of FPOP-labeled ubiquitin was used to optimize the method. The top-down approach in FPOP is limited to smaller proteins, but its usefulness was demonstrated by using it to visualize structural changes induced by co-factor removal from the holo/apo myoglobin system. The top-down data were compared with the literature and with the bottom-up data set obtained on the same samples. The top-down results were found to be in good agreement, which indicates that monitoring a singly oxidized FPOP ion population by the top-down approach is a functional workflow for oxidative protein footprinting.
- MeSH
- Electrons * MeSH
- Protein Footprinting * methods MeSH
- Protein Conformation MeSH
- Myoglobin chemistry MeSH
- Oxidative Stress MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Myoglobin MeSH