Nejvíce citovaný článek - PubMed ID 35056106
The Neuroactive Steroid Pregnanolone Glutamate: Anticonvulsant Effect, Metabolites and Its Effect on Neurosteroid Levels in Developing Rat Brains
Allopregnanolone (allo) and isoallopregnanolone (isoallo) are neuroactive steroid epimers that differ in hydroxyl orientation at carbon three. Allo is a potent GABA-A receptor agonist, while isoallo acts as an antagonist, influencing brain function through their interconversion. Their metabolism varies across brain regions due to enzyme distribution, with AKR1C1-AKR1C3 active in the brain and AKR1C4 restricted to the liver. In rats, AKR1C9 (liver) and AKR1C14 (intestine) perform similar roles. Beyond AKR1Cs, HSD17Bs regulate steroid balance, with HSD17B6 active in the liver, thyroid, and lung, while HSD17B10, a mitochondrial enzyme, influences metabolism in high-energy tissues. Our current data obtained using the GC-MS/MS platform show that allo and isoallo in rats undergo significant metabolic conversion, suggesting a regulatory role in neurosteroid action. High allo levels following isoallo injection indicate brain interconversion, while isoallo clears more slowly from blood and undergoes extensive conjugation. Metabolite patterns differ between brain and plasma-allo injection leads to 5α-DHP and isoallo production, whereas isoallo treatment primarily yields allo. Human plasma contains mostly sulfate/glucuronided steroids (2.4-6% non-sulfate/glucuronided), whereas male rats exhibit much higher free steroid levels (29-56%), likely due to the absence of zona reticularis. These findings highlight tissue-specific enzymatic differences, which may impact neurosteroid regulation and CNS disorders.
- Klíčová slova
- 17β-hydroxysteroid dehydrogenases, GC-MS, aldoketoreductases, allopregnanolone, brain, circulation, hippocampus, isoallopregnanolone, neuroactive steroids, rat, striatum,
- MeSH
- krysa rodu Rattus MeSH
- mozek * metabolismus MeSH
- potkani Sprague-Dawley MeSH
- pregnanolon * metabolismus analogy a deriváty MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- pregnanolon * MeSH
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system. The manifestation of MS is related to steroid changes during the menstrual cycle and pregnancy. As data focusing on the effect of anti-MS drug treatment on steroidome are scarce, we evaluated steroidomic changes (79 steroids) in 61 female MS patients of reproductive age 39 (29, 47) years (median with quartiles) after treatment with anti-MS drugs on the GC-MS/MS platform and immunoassays (cortisol and estradiol). The changes were assessed using steroid levels and steroid molar ratios (SMRs) that may reflect the activities of steroidogenic enzymes (SMRs). A repeated measures ANOVA, followed by multiple comparisons and OPLS models, were used for statistical analyses. The anti-MS treatment decreased steroid levels in the follicular phase. Anti-CD20 monoclonal antibodies (mAb), such as ofatumumab and ocrelizumab; inhibitors of the sphingosine-1-phosphate receptor (S1PRI); and IFNβ-1a decreased circulating 17-hydroxy-pregnanes and shifted the CYP17A1 functioning from the hydroxylase- toward the lyase step. Decreased conjugated/unconjugated steroid ratios were found after treatment with anti-MS drugs, especially for glatiramer acetate and anti-CD20 mAb. In the luteal phase, IFN-β1a treatment increased steroidogenesis; both IFN-β1a and ocrelizumab increased AKR1D1, and S1PRI increased SRD5A functioning. Anti-CD20 mAb reduced the functioning of enzymes catalyzing the synthesis of immunomodulatory 7α/β and 16α-hydroxy-androgens, which may affect the severity of MS. The above findings may be important concerning the alterations in bioactive steroids, such as cortisol; active androgens and estrogens; and neuroactive, neuroprotective, and immunomodulatory steroids in terms of optimization of anti-MS treatment.
- Klíčová slova
- GC-MS/MS, anti-MS drugs, multiple sclerosis, multivariate statistics, steroidomics,
- MeSH
- dospělí MeSH
- glatiramer acetát terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- menstruační cyklus účinky léků MeSH
- roztroušená skleróza * farmakoterapie metabolismus krev MeSH
- steroidy * metabolismus krev MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glatiramer acetát MeSH
- steroidy * MeSH
Starting from simple clinical statistics, the spectrum of methods used in epilepsy research in the Institute of Physiology of the Czechoslovak (now Czech) Academy of Sciences progressively increased. Professor Servít used electrophysiological methods for study of brain activity in lower vertebrates, neuropathology was focused on electronmicroscopic study of cortical epileptic focus and ion-sensitive microelectrodes were used for studies of cortical direct current potentials. Developmental studies used electrophysiological methods (activity and projection of cortical epileptic foci, EEG under the influence of convulsant drugs, hippocampal, thalamic and cortical electrical stimulation for induction of epileptic afterdischarges and postictal period). Extensive pharmacological studies used seizures elicited by convulsant drugs (at first pentylenetetrazol but also other GABA antagonists as well as agonists of glutamate receptors). Motor performance and behavior were also studied during brain maturation. The last but not least molecular biology was included into the spectrum of methods. Many original data were published making a background of position of our laboratory in the first line of laboratories interested in brain development.
- MeSH
- akademie a ústavy MeSH
- biomedicínský výzkum trendy MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- epilepsie * patofyziologie MeSH
- lidé MeSH
- mozek účinky léků fyziologie růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- přehledy MeSH
- Geografické názvy
- Česká republika MeSH
Multiple molecular targets have been identified to mediate membrane-delimited and nongenomic effects of natural and synthetic steroids, but the influence of steroid metabolism on neuroactive steroid signaling is not well understood. To begin to address this question, we set out to identify major metabolites of a neuroprotective synthetic steroid 20-oxo-5β-pregnan-3α-yl l-glutamyl 1-ester (pregnanolone glutamate, PAG) and characterize their effects on GABAA and NMDA receptors (GABARs, NMDARs) and their influence on zebrafish behavior. Gas chromatography-mass spectrometry was used to assess concentrations of PAG and its metabolites in the hippocampal tissue of juvenile rats following intraperitoneal PAG injection. PAG is metabolized in the peripheral organs and nervous tissue to 20-oxo-17α-hydroxy-5β-pregnan-3α-yl l-glutamyl 1-ester (17-hydroxypregnanolone glutamate, 17-OH-PAG), 3α-hydroxy-5β-pregnan-20-one (pregnanolone, PA), and 3α,17α-dihydroxy-5β-pregnan-20-one (17-hydroxypregnanolone, 17-OH-PA). Patch-clamp electrophysiology experiments in cultured hippocampal neurons demonstrate that PA and 17-OH-PA are potent positive modulators of GABARs, while PAG and 17-OH-PA have a moderate inhibitory effect at NMDARs. PAG, 17-OH-PA, and PA diminished the locomotor activity of zebrafish larvae in a dose-dependent manner. Our results show that PAG and its metabolites are potent modulators of neurotransmitter receptors with behavioral consequences and indicate that neurosteroid-based ligands may have therapeutic potential.
- Klíčová slova
- glutamate, negative allosteric modulator, steroid, thigmotaxis, zebrafish,
- MeSH
- dánio pruhované MeSH
- estery MeSH
- GABA MeSH
- krysa rodu Rattus MeSH
- kyselina glutamová MeSH
- pregnanolon * farmakologie chemie MeSH
- receptory GABA-A MeSH
- receptory N-methyl-D-aspartátu * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- estery MeSH
- GABA MeSH
- kyselina glutamová MeSH
- pregnanolon * MeSH
- receptory GABA-A MeSH
- receptory N-methyl-D-aspartátu * MeSH