Most cited article - PubMed ID 35154069
Genetic Influence on Frequencies of Myeloid-Derived Cell Subpopulations in Mouse
Leishmaniasis is a complex disease caused by protozoan parasites of the genus Leishmania, which are transmitted by phlebotomine sand flies. The clinical manifestations of leishmaniasis are diverse, ranging from self-healing cutaneous lesions to fatal systemic disease. Mouse models are instrumental in advancing our understanding of the immune system against infections, yet their limitations in translating findings to humans are increasingly highlighted. The success rate of translating data from mice to humans remains low, largely due to the complexity of diseases and the numerous factors that influence the disease outcomes. Therefore, for the effective translation of data from murine models of leishmaniasis, it is essential to align experimental conditions with those relevant to human infection. Factors such as parasite characteristics, vector-derived components, host status, and environmental conditions must be carefully considered and adapted to enhance the translational relevance of mouse data. These parameters are potentially modifiable and should be carefully integrated into the design and interpretation of experimental procedures in Leishmania studies. In the current paper, we review the challenges and perspective of using mouse as a model for leishmaniasis. We have particularly emphasized the non-genetic factors that influence experiments and focused on strategies to improve translational value of studies on leishmaniasis using mouse models.
- Keywords
- experimental analysis, experimental conditions, human leishmaniasis, influencing factor, mouse model, reproducibility of data, translation,
- MeSH
- Leishmania * immunology MeSH
- Leishmaniasis * parasitology immunology MeSH
- Humans MeSH
- Disease Models, Animal * MeSH
- Mice MeSH
- Reproducibility of Results MeSH
- Translational Research, Biomedical * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia. Outcomes range from asymptomatic infection to fatal encephalitis, with host genetics likely playing a role. BALB/c mice have intermediate susceptibility to TBE virus (TBEV) and STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, which carries 12.5% of the STS genome on the BALB/c background, is more susceptible than BALB/c mice. In the present study, we employed these genetically distinct mouse models to investigate the host response to TBEV infection in both peripheral macrophages, one of the initial target cell populations, and the brain, the terminal target organ of the virus. METHODS: TBEV growth and the production of key cytokines and chemokines were measured and compared in macrophages derived from BALB/c, CcS-11, and STS mice. In addition, brains from these TBEV-infected mouse strains underwent in-depth transcriptomic analysis. RESULTS: Virus production in BALB/c and CcS-11 macrophages exhibited similar kinetics 24 and 48 h post-infection (hpi), but CcS-11 macrophages yielded significantly higher titers 72 hpi. Macrophages from both sensitive strains demonstrated elevated chemokine and proinflammatory cytokine production upon infection, whereas the resistant strain, STS, showed no cytokine/chemokine activation. Transcriptomic analysis of brain tissue demonstrated that the genetic background of the mouse strains dictated their transcriptional response to infection. The resistant strain exhibited a more robust cell-mediated immune response, whereas both sensitive strains showed a less effective cell-mediated response but increased cytokine signaling and signs of demyelination, with loss of oligodendrocytes. CONCLUSIONS: Our findings suggest that variations in susceptibility linked to host genetic background correspond with distinct host responses, both in the periphery upon virus entry into the organism and in the brain, the target organ of the virus. These results provide insights into the influence of host genetics on the clinical trajectory of TBE.
- Keywords
- Genetics, Macrophages, Mouse model, Neuroinflammation, Tick-borne encephalitis, Tick-borne encephalitis virus, Transcriptomics,
- MeSH
- Cytokines metabolism MeSH
- Genetic Predisposition to Disease * MeSH
- Genotype MeSH
- Encephalitis, Tick-Borne * genetics immunology pathology virology MeSH
- Macrophages * virology immunology metabolism MeSH
- Brain * virology immunology pathology metabolism MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Encephalitis Viruses, Tick-Borne * MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cytokines MeSH
Cutaneous leishmaniasis, a parasitic disease caused by Leishmania major, is a widely frequent form in humans. To explore the importance of the host gut microbiota and to investigate its changes during L. major infection, two different groups of mouse models were assessed. The microbiome of two parts of the host gut-ileum and colon-from infected and non-infected mice were characterised by sequencing of 16S rDNA using an Ion Torrent PGM platform. Microbiome analysis was performed to reveal changes related to the susceptibility and the genetics of mice strains in two different gut compartments and to compare the results between infected and non-infected mice. The results showed that Leishmania infection affects mainly the ileum microbiota, whereas the colon bacterial community was more stable. Different biomarkers were determined in the gut microbiota of infected resistant mice and infected susceptible mice using LEfSe analysis. Lactobacillaceae was associated with resistance in the colon microbiota of all resistant mice strains infected with L. major. Genes related to xenobiotic biodegradation and metabolism and amino acid metabolism were primarily enriched in the small intestine microbiome of resistant strains, while genes associated with carbohydrate metabolism and glycan biosynthesis and metabolism were most abundant in the gut microbiome of the infected susceptible mice. These results should improve our understanding of host-parasite interaction and provide important insights into the effect of leishmaniasis on the gut microbiota. Also, this study highlights the role of host genetic variation in shaping the diversity and composition of the gut microbiome. KEY POINTS: • Leishmaniasis may affect mainly the ileum microbiota while colon microbiota was more stable. • Biomarkers related with resistance or susceptibility were determined in the gut microbiota of mice. • Several pathways were predicted to be upregulated in the gut microbiota of resistant or susceptible mice.
- Keywords
- Cutaneous leishmaniasis, Gut microbiota, Host-parasite interaction, Leishmania major infection, Microbiome analysis, Mouse models,
- MeSH
- Biomarkers MeSH
- Leishmania major * MeSH
- Leishmaniasis, Cutaneous * MeSH
- Humans MeSH
- Mice MeSH
- Disease Susceptibility microbiology MeSH
- Gastrointestinal Microbiome * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers MeSH
Leishmaniasis, a disease caused by parasites of Leishmania spp., endangers more than 1 billion people living in endemic countries and has three clinical forms: cutaneous, mucocutaneous, and visceral. Understanding of individual differences in susceptibility to infection and heterogeneity of its pathology is largely lacking. Different mouse strains show a broad and heterogeneous range of disease manifestations such as skin lesions, splenomegaly, hepatomegaly, and increased serum levels of immunoglobulin E and several cytokines. Genome-wide mapping of these strain differences detected more than 30 quantitative trait loci (QTLs) that control the response to Leishmania major. Some control different combinations of disease manifestations, but the nature of this heterogeneity is not yet clear. In this study, we analyzed the L. major response locus Lmr15 originally mapped in the strain CcS-9 which carries 12.5% of the genome of the resistant strain STS on the genetic background of the susceptible strain BALB/c. For this analysis, we used the advanced intercross line K3FV between the strains BALB/c and STS. We confirmed the previously detected loci Lmr15, Lmr18, Lmr24, and Lmr27 and performed genetic dissection of the effects of Lmr15 on chromosome 11. We prepared the interval-specific recombinant strains 6232HS1 and 6229FUD, carrying two STS-derived segments comprising the peak linkage of Lmr15 whose lengths were 6.32 and 17.4 Mbp, respectively, and analyzed their response to L. major infection. These experiments revealed at least two linked but functionally distinct chromosomal regions controlling IFNγ response and IgE response, respectively, in addition to the control of skin lesions. Bioinformatics and expression analysis identified the potential candidate gene Top3a. This finding further clarifies the genetic organization of factors relevant to understanding the differences in the individual risk of disease.
- Keywords
- Leishmania major, advanced intercross line, bioinformatics analysis, fine mapping, functional heterogeneity, quantitative trait locus, recombinant mapping, susceptibility to infection,
- MeSH
- Cytokines MeSH
- Immunoglobulin E MeSH
- Interferon-gamma genetics MeSH
- Skin Diseases * MeSH
- Leishmania major * genetics MeSH
- Mice MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cytokines MeSH
- Immunoglobulin E MeSH
- Interferon-gamma MeSH