Nejvíce citovaný článek - PubMed ID 35523414
The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective
Nanodrugs hold great promise for targeted therapies, but their potential for cytotoxicity remains a major area of concern, threatening both patient safety and clinical translation. In this systematic review, we conducted a systematic investigation of nanotoxicity studies-identified through an AI-assisted screening procedure using Scopus, PubMed, and Elicit AI-to establish the molecular determinants of nanodrug-induced cytotoxicity. Our findings reveal three dominant and linked mechanisms that consistently act in a range of nanomaterials: oxidative stress, inflammatory signaling, and lysosomal disruption. Key nanomaterial properties like chemical structure, size, shape, surface charge, tendency to aggregate, and biocorona formation control these pathways, modulating cellular uptake, reactive oxygen species generation, cytokine release, and subcellular injury. Notably, the most frequent mechanism was oxidative stress, which often initiated downstream inflammatory and apoptotic signaling. By linking these toxicity pathways with particular nanoparticle characteristics, our review presents necessary guidelines for safer, more biocompatible nanodrug formulation design. This extensive framework acknowledges the imperative necessity for mechanistic toxicity assessment in nanopharmaceutical design and underscores the strength of AI tools in driving systematic toxicology studies.
- Klíčová slova
- ROS, cytotoxicity, molecular mechanisms of nanotoxicity, nanodrugs, nanoparticles, oxidative stress,
- MeSH
- apoptóza účinky léků MeSH
- lidé MeSH
- lyzozomy účinky léků metabolismus MeSH
- nanočástice * chemie toxicita MeSH
- nanostruktury * toxicita chemie MeSH
- oxidační stres účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
DNA nanotechnology has revolutionized materials science and biomedicine by enabling precise manipulation of matter at the nanoscale. DNA nanostructures (DNs) in particular represent a promising frontier for targeted therapeutics. Engineered DNs offer unprecedented molecular programmability, biocompatibility, and structural versatility, making them ideal candidates for advanced drug delivery, organelle regulation, and cellular function modulation. This Perspective explores the emerging role of DNs in modulating cellular behavior through organelle-targeted interventions. We highlight current advances in nuclear, mitochondrial, and lysosomal targeting, showcasing applications ranging from gene delivery to cancer therapeutics. For instance, DNs have enabled precision mitochondrial disruption in cancer cells, lysosomal pH modulation to enhance gene silencing, and nuclear delivery of gene-editing templates. While DNs hold immense promise for advancing nanomedicine, outstanding challenges include optimizing biological interactions and addressing safety concerns. This Perspective highlights the current potential of DNs for rational control of targeted organelles, which could lead to novel therapeutic strategies and advancement of precision nanomedicines in the future.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
DNA nanostructures (DNs) have gained popularity in various biomedical applications due to their unique properties, including structural programmability, ease of synthesis and functionalization, and low cytotoxicity. Effective utilization of DNs in biomedical applications requires a fundamental understanding of their interactions with living cells and the mechanics of cellular uptake. Current knowledge primarily focuses on how the physicochemical properties of DNs, such as mass, shape, size, and surface functionalization, affect uptake efficacy. However, the role of cellular mechanics and morphology in DN uptake remains largely unexplored. In this work, we show that cells subjected to geometric constraints remodel their actin cytoskeleton, resulting in differential mechanical force generation that facilitates DN uptake. The length, number, and orientation of F-actin fibers are influenced by these constraints, leading to distinct mechanophenotypes. Overall, DN uptake is governed by F-actin forces arising from filament reorganisation under geometric constraints. These results underscore the importance of actin dynamics in the cellular uptake of DNs and suggest that leveraging geometric constraints to induce specific cell morphology adaptations could enhance the uptake of therapeutically designed DNs.
- MeSH
- aktiny metabolismus chemie MeSH
- cytoskelet * metabolismus chemie MeSH
- DNA * chemie metabolismus MeSH
- lidé MeSH
- mikrofilamenta * metabolismus chemie MeSH
- nanostruktury * chemie MeSH
- povrchové vlastnosti MeSH
- velikost částic MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aktiny MeSH
- DNA * MeSH
DNA nanotechnology is a rapidly growing field that provides exciting tools for biomedical applications. Targeting lysosomal functions with nanomaterials, such as DNA nanostructures (DNs), represents a rational and systematic way to control cell functionality. Here we present a versatile DNA nanostructure-based platform that can modulate a number of cellular functions depending on the concentration and surface decoration of the nanostructure. Utilizing different peptides for surface functionalization of DNs, we were able to rationally modulate lysosomal activity, which in turn translated into the control of cellular function, ranging from changes in cell morphology to modulation of immune signaling and cell death. Low concentrations of decalysine peptide-coated DNs induced lysosomal acidification, altering the metabolic activity of susceptible cells. In contrast, DNs coated with an aurein-bearing peptide promoted lysosomal alkalization, triggering STING activation. High concentrations of decalysine peptide-coated DNs caused lysosomal swelling, loss of cell-cell contacts, and morphological changes without inducing cell death. Conversely, high concentrations of aurein-coated DNs led to lysosomal rupture and mitochondrial damage, resulting in significant cytotoxicity. Our study holds promise for the rational design of a new generation of versatile DNA-based nanoplatforms that can be used in various biomedical applications, like the development of combinatorial anti-cancer platforms, efficient systems for endolysosomal escape, and nanoplatforms modulating lysosomal pH.
- Klíčová slova
- DNA nanotechnology, Interferon, Lysosomal rupture, Nanotechnology, bio/nano interactions, lysosome interference,
- Publikační typ
- časopisecké články MeSH
In recent years, it has been recognized that mechanical forces play an important regulative role in living organisms and possess a direct impact on crucial cell functions, ranging from cell growth to maintenance of tissue homeostasis. Advancements in mechanobiology have revealed the profound impact of mechanical signals on diverse cellular responses that are cell type specific. Notably, numerous studies have elucidated the pivotal role of different mechanical cues as regulatory factors influencing various cellular processes, including cell spreading, locomotion, differentiation, and proliferation. Given these insights, it is unsurprising that the responses of cells regulated by physical forces are intricately linked to the modulation of nanoparticle uptake kinetics and processing. This complex interplay underscores the significance of understanding the mechanical microenvironment in shaping cellular behaviors and, consequently, influencing how cells interact with and process nanoparticles. Nevertheless, our knowledge on how localized physical forces affect the internalization and processing of nanoparticles by cells remains rather limited. A significant gap exists in the literature concerning a systematic analysis of how mechanical cues might bias the interactions between nanoparticles and cells. Hence, our aim in this review is to provide a comprehensive and critical analysis of the existing knowledge regarding the influence of mechanical cues on the complicated dynamics of cell-nanoparticle interactions. By addressing this gap, we would like to contribute to a detailed understanding of the role that mechanical forces play in shaping the complex interplay between cells and nanoparticles.
- Klíčová slova
- Extracellular matrix, Mechanical cues, Mechanotransduction, Nanomedicine; Nanoparticles,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH