Most cited article - PubMed ID 35889316
Thorough Investigation of the Phenolic Profile of Reputable Greek Honey Varieties: Varietal Discrimination and Floral Markers Identification Using Liquid Chromatography-High-Resolution Mass Spectrometry
Pancreatic lipase (PNLIP, EC 3.1.1.3) plays a pivotal role in the digestion of dietary lipids, a metabolic pathway directly related to obesity. One of the effective strategies in obesity treatment is the inhibition of PNLIP, which is possible to be achieved by specific phenolic compounds occurring in high abundance in some plants. In this study, a multidisciplinary approach is presented investigating the PNLIP inhibitory effect of 33 plants belonging in the Asteraceae botanical family. In the first stage of the study, a rapid and cost-efficient PNLIP assay in a 96-microwell plate format was developed and important parameters were optimized, e.g., the enzyme substrate. Upon PNLIP assay optimization, aqueous and dichloromethane Asteraceae plant extracts were tested and a cut-off inhibition level was set to further analyze only the samples with a significant inhibitory effect (inhibitory rate > 40%), using an ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (UHPLC-q-TOF-MS) method. Specifically, a metabolomic suspect screening was performed and 69 phenolic compounds were tentatively identified, including phenolic acids, flavonoids, flavonoid-3-O-glycosides, and flavonoid-7-O-glycosides, amongst others. In the case of aqueous extracts, phytochemicals known for inducing PNLIP inhibitory effect, e.g., compounds containing galloyl molecules or caffeoylquinic acids, were monitored in Chrysanthemum morifolium, Grindella camporum and Hieracium pilosella extracts. All in all, the presented approach combines in vitro bioactivity measurements to high-end metabolomics to identify phenolic compounds with potential medicinal and/or dietary applications.
- Keywords
- bioprospecting, enzyme assay, in vitro testing, metabolomics, obesity, phytochemicals, polyphenols, suspect screening, ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry,
- MeSH
- Asteraceae * chemistry MeSH
- Chromatography, Liquid MeSH
- Phenols analysis MeSH
- Flavonoids chemistry MeSH
- Phytochemicals analysis MeSH
- Glycosides MeSH
- Mass Spectrometry MeSH
- Lipase MeSH
- Lipids MeSH
- Methylene Chloride MeSH
- Obesity MeSH
- Plant Extracts chemistry pharmacology MeSH
- Chromatography, High Pressure Liquid methods MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Phenols MeSH
- Flavonoids MeSH
- Phytochemicals MeSH
- Glycosides MeSH
- Lipase MeSH
- Lipids MeSH
- Methylene Chloride MeSH
- Plant Extracts MeSH