Nejvíce citovaný článek - PubMed ID 36211963
Non-thermal plasma causes Pseudomonas aeruginosa biofilm release to planktonic form and inhibits production of Las-B elastase, protease and pyocyanin
The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of Pseudomonas aeruginosa on the rise. Addressing this challenge necessitates exploring strategies that would complement existing antimicrobial agents, e.g. by substances mitigating bacterial virulence without eliciting selective pressure for resistance emergence. In this respect, free-form chitosan has demonstrated promising efficacy, prompting our investigation into reinforcing its effects through nanoparticle formulations. Our study focuses on the preparation of chitosan nanoparticles under suitable conditions while emphasizing the challenges associated with stability that can affect biological activity. These challenges are mitigated by introducing quaternized chitosan, which ensures colloidal stability in the culture media. Our approach led to the production of trimethylchitosan nanoparticles with a median size of 103 nm, circularity of 0.967, and a charge of 14.9 ± 3.1 mV, stable within a one-month period in a water stock solution, showing promising attributes for further valorization. Furthermore, the study delves into the antimicrobial activity of trimethylchitosan nanoparticles on Pseudomonas aeruginosa and confirms the benefits of both nanoformulation and modification of chitosan, as our prepared nanoparticles inhibit 50% of the bacterial population at concentration ≥160 mg L-1 within tested strains. Additionally, we identified a concentration of 5 mg L-1 that no longer impedes bacterial growth, allowing reliable verification of the effect of the prepared nanoparticles on Pseudomonas aeruginosa virulence factors, including motility, protease activity, hemolytic activity, rhamnolipids, pyocyanin, and biofilm production. Although trimethylchitosan nanoparticles exhibit promise as an effective antibiofilm agent (reducing biofilm development by 50% at concentrations ranging from 80 to 160 mg L-1) their impact on virulence manifestation is likely not directly associated with quorum sensing. Instead, it can probably be attributed to non-specific interactions with the bacterial surface. This exploration provides valuable insights into the potential of quaternized chitosan nanoparticles in addressing Pseudomonas aeruginosa infections and underscores the multifaceted nature of their antimicrobial effects.
- Publikační typ
- časopisecké články MeSH
Antibiotic resistance (ATBR) is increasing every year as the overuse of antibiotics (ATBs) and the lack of newly emerging antimicrobial agents lead to an efficient pathogen escape from ATBs action. This trend is alarming and the World Health Organization warned in 2021 that ATBR could become the leading cause of death worldwide by 2050. The development of novel ATBs is not fast enough considering the situation, and alternative strategies are therefore urgently required. One such alternative may be the use of non-thermal plasma (NTP), a well-established antimicrobial agent actively used in a growing number of medical fields. Despite its efficiency, NTP alone is not always sufficient to completely eliminate pathogens. However, NTP combined with ATBs is more potent and evidence has been emerging over the last few years proving this is a robust and highly effective strategy to fight resistant pathogens. This minireview summarizes experimental research addressing the potential of the NTP-ATBs combination, particularly for inhibiting planktonic and biofilm growth and treating infections in mouse models caused by methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The published studies highlight this combination as a promising solution to emerging ATBR, and further research is therefore highly desirable.
- Klíčová slova
- Pseudomonas aeruginosa, antimicrobial resistance (AMR), cold atmospheric plasma (CAP), combinatory therapy, methicillin-resistant Staphylococcus aureus,
- MeSH
- antibakteriální látky * farmakologie terapeutické užití MeSH
- antibiotická rezistence MeSH
- bakteriální léková rezistence MeSH
- biofilmy * účinky léků MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- plazmové plyny * farmakologie MeSH
- pseudomonádové infekce mikrobiologie farmakoterapie MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- stafylokokové infekce mikrobiologie farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Non-thermal plasma (NTP) is a well-known decontamination tool applicable for a wide range of microorganisms and viruses. Since the recent COVID-19 pandemic highlighted the need to decontaminate all daily used items, it is highly desirable to address the applicability of NTP, including its possible harmful effects. To the best of our knowledge, a comprehensive characterization of NTP effects on sensitive materials is still lacking. We investigated the potential damage to common materials of daily use inflicted by air atmospheric NTP generated in Plasmatico v1.0. The materials tested were paper, various metals, and passive and active electronic components modelling sensitive parts of commonly used small electronic devices. The NTP-exposed paper remained fully usable with only slight changes in its properties, such as whitening, pH change, and degree of polymerization. NTP caused mild oxidation of copper, tinned copper, brass, and a very mild oxidation of stainless steel. However, these changes do not affect the normal functionality of these materials. No significant changes were observed for passive electronic components; active components displayed a very slight shift of the measured values observed for the humidity sensor. In conclusion, NTP can be considered a gentle tool suitable for decontamination of various sensitive materials.
- MeSH
- COVID-19 * prevence a kontrola MeSH
- elektronika MeSH
- lidé MeSH
- měď MeSH
- pandemie MeSH
- plazmové plyny * MeSH
- potřeby pro domácnost * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- měď MeSH
- plazmové plyny * MeSH