Nejvíce citovaný článek - PubMed ID 36247607
The relationship between transposable elements and ecological niches in the Greater Cape Floristic Region: A study on the genus Pteronia (Asteraceae)
BACKGROUND: The centromere is one of the key regions of the eukaryotic chromosome. While maintaining its function, centromeric DNA may differ among closely related species. Here, we explored the composition and structure of the pericentromeres (a chromosomal region including a functional centromere) of Hieracium alpinum (Asteraceae), a member of one of the most diverse genera in the plant kingdom. Previously, we identified a pericentromere-specific tandem repeat that made it possible to distinguish reads within the Oxford Nanopore library attributed to the pericentromeres, separating them into a discrete subset and allowing comparison of the repeatome composition of this subset with the remaining genome. RESULTS: We found that the main satellite DNA (satDNA) monomer forms long arrays of linear and block types in the pericentromeric heterochromatin of H. alpinum, and very often, single reads contain forward and reverse arrays and mirror each other. Beside the major, two new minor satDNA families were discovered. In addition to satDNAs, high amounts of LTR retrotransposons (TEs) with dominant of Tekay lineage, were detected in the pericentromeres. We were able to reconstruct four main TEs of the Ty3-gypsy and Ty1-copia superfamilies and compare their relative positions with satDNAs. The latter showed that the conserved domains (CDs) of the TE proteins are located between the newly discovered satDNAs, which appear to be parts of ancient Tekay LTRs that we were able to reconstruct. The dominant satDNA monomer shows a certain similarity to the GAG CD of the Angela retrotransposon. CONCLUSIONS: The species-specific pericentromeric arrays of the H. alpinum genome are heterogeneous, exhibiting both linear and block type structures. High amounts of forward and reverse arrays of the main satDNA monomer point to multiple microinversions that could be the main mechanism for rapid structural evolution stochastically creating the uniqueness of an individual pericentromeric structure. The traces of TEs insertion waves remain in pericentromeres for a long time, thus "keeping memories" of past genomic events. We counted at least four waves of TEs insertions. In pericentromeres, TEs particles can be transformed into satDNA, which constitutes a background pool of minor families that, under certain conditions, can replace the dominant one(s).
- Klíčová slova
- Asteraceae, Hieracium, Oxford Nanopore Technology sequencing, Pericentromeres, Plants, Satellite DNA, Transposable elements,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: The Greater Cape Floristic Region is one of the world's biodiversity hotspots and is considered poor in polyploids. To test this assumption, ploidy variation was investigated in a widespread Cape shrub, Dicerothamnus rhinocerotis (renosterbos, Asteraceae). The aim was to elucidate the cytotype distribution and population composition across the species range, and to assess differences in morphology, environmental niches and genetics. METHODS: Ploidy level and genome size were determined via flow cytometry and cytotype assignment was confirmed by chromosome counting. Restriction site-associated DNA sequencing (RADseq) analyses were used to infer genetic relationships. Cytotype climatic and environmental niches were compared using a range of environmental layers and a soil model, while morphological differences were examined using multivariate methods. KEY RESULTS: The survey of 171 populations and 2370 individuals showed that the species comprises diploid and tetraploid cytotypes, no intermediates and only 16.8 % of mixed populations. Mean 2C values were 1.80-2.06 pg for diploids and 3.48-3.80 pg for tetraploids, with very similar monoploid genome sizes. Intra-cytotype variation showed a significant positive correlation with altitude and longitude in both cytotypes and with latitude in diploids. Although niches of both cytotypes were highly equivalent and similar, their optima and breadth were shifted due to differences mainly in isothermality and available water capacity. Morphometric analyses showed significant differences in the leaves and corolla traits, the number of florets per capitulum, and cypsela dimensions between the two cytotypes. Genetic analyses revealed four groups, three of them including both cytotypes. CONCLUSIONS: Dicerothamnus rhinocerotis includes two distinct cytotypes that are genetically similar. While tetraploids arise several times independently within different genetic groups, morphological and ecological differences are evident between cytotypes. Our results open up new avenues for questions regarding the importance of ploidy in the megadiverse Cape flora, and exemplify the need for population-based studies focused on ploidy variation.
- Klíčová slova
- Elytropappus rhinocerotis, Stoebe clade, Asteraceae, Compositae, Gnaphalieae, RADseq, South Africa, flow cytometry, ploidy level, renosterbos, renosterveld,
- MeSH
- Asteraceae * genetika MeSH
- délka genomu MeSH
- diploidie * MeSH
- ekosystém * MeSH
- genetická variace MeSH
- genom rostlinný MeSH
- tetraploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH