Nejvíce citovaný článek - PubMed ID 15969739
Polyploidisation is a significant reproductive barrier, yet genetic evidence indicates that interploidy admixture is more common than previously thought. Theoretical models and controlled crosses support the 'triploid bridge' hypothesis, proposing that hybrids of intermediate ploidy facilitate gene flow. However, comprehensive evidence combining experimental and genetic data from natural mixed-ploidy species is missing. Here, we investigated the rates and directionality of gene flow within a diploid-autotetraploid contact zone of Cardamine amara, a species with abundant natural triploids. We cytotyped over 400 individuals in the field, conducted reciprocal interploidy crosses, and inferred gene flow based on genome-wide sequencing of 84 individuals. Triploids represent a conspicuous entity in mixed-ploidy populations (5%), yet only part of them arose through interploidy hybridisation. Despite being rarely formed, triploid hybrids can backcross with their parental cytotypes, producing viable offspring that are often euploid (in 42% of cases). In correspondence, D-statistics and coalescent simulations documented a significant genome-wide signal of bidirectional gene flow in sympatric but not allopatric populations. Triploids, though rare, thus seem to play a key role in overcoming polyploidy-related reproductive barriers in C. amara. In sum, we present integrative evidence for interploidy gene flow mediated by a triploid bridge in natural populations.
- Klíčová slova
- introgression, polyploidy, population genomics, speciation, whole genome duplication,
- MeSH
- Cardamine * genetika MeSH
- genová introgrese * MeSH
- hybridizace genetická MeSH
- modely genetické MeSH
- ploidie MeSH
- populační genetika * MeSH
- sympatrie genetika MeSH
- tok genů * MeSH
- triploidie * MeSH
- Publikační typ
- časopisecké články MeSH
To date, no study has been conducted to investigate the diversity in honeybee populations of Apis mellifera in the Czech Republic. Between 2022 and 2023, worker bees were collected from colonies distributed throughout the Czech Republic in 77 districts, and their genetic differences were examined using 22 microsatellite loci. The samples were obtained from hives (n = 3647) and through the process of capture on flowers (n = 553). Genetic diversity parameters were assessed for both populations in all 77 districts. The findings demonstrated that honeybee populations exhibit moderate genetic diversity, as evidenced by the number of observed alleles, the Shannon index, and heterozygosity values. There was no discrepancy in diversity between hive and flower samples. Diversity characteristics were determined: mean observed heterozygosity 0.55 (hives) and 0.56 (flowers), and fixation index 0.58 for both populations. The average number of alleles per locus was 13.77 and 11.18 from hives and flowers, respectively. The low FST and FIS values (they measured the level of genetic differentiation between populations and the level of inbreeding, respectively) suggest the absence or minimal genetic diversity within and among studied populations. The genetic variation was calculated as 2% and 1% between populations, 8% and 6% between individuals within populations, and 91% and 93% between all individuals in samples from hives and flowers, respectively. Cluster and DAPC (discriminant analysis principal component) analysis classified the bee samples collected from across the country into three and five to six distinguishable groups, respectively. The honeybee population in the Czech Republic displays sufficient diversity and a partial structure. However, there appears to be no correlation between the genetic groups and the geographic regions to which they are assigned.
- Klíčová slova
- Apis mellifera, Central Europe, district, genetic group, population genetics, sampling method,
- Publikační typ
- časopisecké články MeSH
Abies guatemalensis Rehder, an endangered conifer endemic to Central American highlands, is ecologically vital in upper montane forests. It faces threats from habitat fragmentation, unsustainable logging, and illegal Christmas tree harvesting. While previous genetic studies on mature trees from eighteen populations showed high within-population diversity and limited among-population differentiation, the genetic impact of recent anthropogenic pressures on younger generations has yet to be discovered. Understanding these effects is crucial for developing effective conservation strategies for this vulnerable species. We sampled 170 young trees (< 15 years old) from seven populations across Guatemala. Seven microsatellite markers were used to analyse genetic diversity, population structure, and recent demographic history. Moderate levels of genetic diversity were observed within populations (mean Shannon diversity index = 4.97, mean Simpson's index = 0.51, mean allelic richness = 11.59, mean observed heterozygosity = 0.59). Although genetic structure broadly aligned with mountain corridors, substantial admixture patterns suggest historical connectivity across all populations. Most populations showed evidence of recent bottlenecks (p < 0.05) and inbreeding. The results suggest a potential decline in genetic diversity and increased population structuring (ΦST = 0.274, p < 0.01) over the past decades compared to the previous study on old trees. The observed genetic patterns indicate ongoing impacts of habitat fragmentation and anthropogenic pressures on A. guatemalensis. Conservation efforts should prioritise expanding effective population sizes and facilitating gene flow, particularly for isolated populations. While restoration efforts may be logistically easier within mountain ranges, genetic evidence suggests that increasing overall population connectivity could benefit this species. Management strategies should implement systematic seed collection protocols to maintain genetic diversity in future populations. These findings highlight the urgent need for conservation measures to preserve remaining genetic diversity and promote connectivity among A. guatemalensis populations.
- Klíčová slova
- Conservation, Gene flow, Genetic bottleneck, Guatemalan fir, Inbreeding, Overexploitation,
- MeSH
- ekosystém * MeSH
- genetická variace * MeSH
- jedle * genetika MeSH
- mikrosatelitní repetice * genetika MeSH
- ohrožené druhy * MeSH
- populační genetika MeSH
- zachování přírodních zdrojů MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Guatemala MeSH
Reciprocal effects of adaptive radiations on the evolution of interspecific interactions, like parasitism, remain barely explored. We test whether the recent radiations of European whitefish (Coregonus spp.) across and within perialpine and subarctic lakes promote its parasite Proteocephalus fallax (Platyhelminthes: Cestoda) to undergo host repertoire expansion via opportunity and ecological fitting, or adaptive radiation by specialization. Using de novo genomic data, we examined P. fallax differentiation across lakes, within lakes across sympatric host species, and the contributions of host genetics versus host habitat use and trophic preferences. Whitefish intralake radiations prompted parasite host repertoire expansion in all lakes, whereas P. fallax differentiation remains incipient among sympatric fish hosts. Whitefish genetic differentiation per se did not explain the genetic differentiation among its parasite populations, ruling out codivergence with the host. Instead, incipient parasite differentiation was driven by whitefish phenotypic radiation in trophic preferences and habitat use in an arena of parasite opportunity and ecological fitting to utilize resources from emerging hosts. Whilst the whitefish radiation provides a substrate for the parasite to differentiate along the same water-depth ecological axis as Coregonus spp., the role of the intermediate hosts in parasite speciation may be overlooked. Parasite multiple-level ecological fitting to both fish and crustacean intermediate hosts resources may be responsible for parasite population substructure in Coregonus spp. We propose parasites' delayed arrival was key to the initial burst of postglacial intralake whitefish diversification, followed by opportunistic tapeworm host repertoire expansion and a delayed nonadaptive radiation cascade of incipient tapeworm differentiation. At the geographical scale, dispersal, founder events, and genetic drift following colonization of spatially heterogeneous landscapes drove strong parasite differentiation. We argue that these microevolutionary processes result in the mirroring of host-parasite phylogenies through phylogenetic tracking at macroevolutionary and geographical scales.
- Klíčová slova
- Platyhelminthes, RADseq, host repertoire expansion, population genetics, speciation, species flocks,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Rubus ser. Glandulosi provides a unique model of geographical parthenogenesis on a homoploid (2n = 4x) level. We aim to characterize evolutionary and phylogeographical patterns in this taxon and shed light on the geographical differentiation of apomicts and sexuals. Ultimately, we aim to evaluate the importance of phylogeography in the formation of geographical parthenogenesis. METHODS: Rubus ser. Glandulosi was sampled across its Eurasian range together with other co-occurring Rubus taxa (587 individuals in total). Double-digest restriction site-associated DNA sequencing (ddRADseq) and modelling of suitable climate were used for evolutionary inferences. KEY RESULTS: Six ancestral species were identified that contributed to the contemporary gene pool of R. ser. Glandulosi. Sexuals were introgressed from Rubus dolichocarpus and Rubus moschus in West Asia and from Rubus ulmifolius agg., Rubus canescens and Rubus incanescens in Europe, whereas apomicts were characterized by alleles of Rubus subsect. Rubus. Gene flow between sexuals and apomicts was also detected, as was occasional hybridization with other taxa. CONCLUSIONS: We hypothesize that sexuals survived the last glacial period in several large southern refugia, whereas apomicts were mostly restricted to southern France, whence they quickly recolonized Central and Western Europe. The secondary contact of sexuals and apomicts was probably the principal factor that established geographical parthenogenesis in R. ser. Glandulosi. Sexual populations are not impoverished in genetic diversity along their borderline with apomicts, and maladaptive population genetic processes probably did not shape the geographical patterns.
- Klíčová slova
- Rubus subgen. Rubus, Apomixis, ddRADseq, geographical parthenogenesis, introgression, private alleles,
- MeSH
- apomixie genetika MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- fylogeografie * MeSH
- genetická variace MeSH
- partenogeneze genetika MeSH
- Rosaceae * genetika fyziologie MeSH
- tok genů MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Asie MeSH
- Evropa MeSH
BACKGROUND AND AIMS: The Greater Cape Floristic Region is one of the world's biodiversity hotspots and is considered poor in polyploids. To test this assumption, ploidy variation was investigated in a widespread Cape shrub, Dicerothamnus rhinocerotis (renosterbos, Asteraceae). The aim was to elucidate the cytotype distribution and population composition across the species range, and to assess differences in morphology, environmental niches and genetics. METHODS: Ploidy level and genome size were determined via flow cytometry and cytotype assignment was confirmed by chromosome counting. Restriction site-associated DNA sequencing (RADseq) analyses were used to infer genetic relationships. Cytotype climatic and environmental niches were compared using a range of environmental layers and a soil model, while morphological differences were examined using multivariate methods. KEY RESULTS: The survey of 171 populations and 2370 individuals showed that the species comprises diploid and tetraploid cytotypes, no intermediates and only 16.8 % of mixed populations. Mean 2C values were 1.80-2.06 pg for diploids and 3.48-3.80 pg for tetraploids, with very similar monoploid genome sizes. Intra-cytotype variation showed a significant positive correlation with altitude and longitude in both cytotypes and with latitude in diploids. Although niches of both cytotypes were highly equivalent and similar, their optima and breadth were shifted due to differences mainly in isothermality and available water capacity. Morphometric analyses showed significant differences in the leaves and corolla traits, the number of florets per capitulum, and cypsela dimensions between the two cytotypes. Genetic analyses revealed four groups, three of them including both cytotypes. CONCLUSIONS: Dicerothamnus rhinocerotis includes two distinct cytotypes that are genetically similar. While tetraploids arise several times independently within different genetic groups, morphological and ecological differences are evident between cytotypes. Our results open up new avenues for questions regarding the importance of ploidy in the megadiverse Cape flora, and exemplify the need for population-based studies focused on ploidy variation.
- Klíčová slova
- Elytropappus rhinocerotis, Stoebe clade, Asteraceae, Compositae, Gnaphalieae, RADseq, South Africa, flow cytometry, ploidy level, renosterbos, renosterveld,
- MeSH
- Asteraceae * genetika MeSH
- délka genomu MeSH
- diploidie * MeSH
- ekosystém * MeSH
- genetická variace MeSH
- genom rostlinný MeSH
- tetraploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Phytophthora pseudosyringae is a self-fertile pathogen of woody plants, particularly associated with tree species from the genera Fagus, Notholithocarpus, Nothofagus and Quercus, which is found across Europe and in parts of North America and Chile. It can behave as a soil pathogen infecting roots and the stem collar region, as well as an aerial pathogen infecting leaves, twigs and stem barks, causing particular damage in the United Kingdom and western North America. The population structure, migration and potential outcrossing of a worldwide collection of isolates were investigated using genotyping-by-sequencing. Coalescent-based migration analysis revealed that the North American population originated from Europe. Historical gene flow has occurred between the continents in both directions to some extent, yet contemporary migration is overwhelmingly from Europe to North America. Two broad population clusters dominate the global population of the pathogen, with a subgroup derived from one of the main clusters found only in western North America. Index of association and network analyses indicate an influential level of outcrossing has occurred in this preferentially inbreeding, homothallic oomycete. Outcrossing between the two main population clusters has created distinct subgroups of admixed individuals that are, however, less common than the main population clusters. Differences in life history traits between the two main population clusters should be further investigated together with virulence and host range tests to evaluate the risk each population poses to natural environments worldwide.
- Klíčová slova
- forest pathogen, homothallic, invasive pathogen, migration, outcrossing, population genetics,
- MeSH
- fylogeografie MeSH
- lidé MeSH
- nemoci rostlin MeSH
- Phytophthora * genetika MeSH
- rostliny MeSH
- stromy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The genus Salix, comprising some 400-500 species, is important in various alluvial or wet habitats of the northern hemisphere. It is a promising crop for applications such as biomass production, biofuels, or environmental projects. Clear species delimitation is crucial in ecology, biotechnology, and horticulture. DArTseq markers, a genome-wide technique, were tested for species and hybrid identification. A total of 179 willow samples were analysed, including six species of Salix subgen. Salix and four species of Salix subgen. Vetrix, including those used in biomass crop production, representing important European taxa. Identification of species-specific markers, clustering analyses (principal coordinate analysis, neighbor-joining) and Bayesian methods (Structure) unambiguously identified putative hybrids. In addition to demonstrating the high efficiency of DArT-seq markers in identifying willow hybrids, we also opened-up new questions about hybridisation processes and systematics. We detected unidirectional hybridisation between S. alba and S. fragilis, forming backcross hybrids, and we rejected the hypothesis that S. fragilis does not occur naturally in Europe. Further, the isolated position of Salix triandra within the genus was confirmed.
- Klíčová slova
- DArTseq, Salix, biomass crop, hybrid identification, hybridisation, systematics, willow,
- Publikační typ
- časopisecké články MeSH
Microsatellite markers were used for the assessment of genetic diversity and genetic structure in a germplasm collection of yellow mustard, Sinapis alba L. The comprehensive collection of genetic resources represented 187 registered varieties, landraces, and breeding materials. Microsatellites generated 44 polymorphic alleles in 15 loci. Eleven of them were medium to highly polymorphic, and the high levels of observed heterozygosity (0.12-0.83) and Nei's gene diversity index (0.11-0.68) indicated a high level of polymorphism. Based on PCoA and neighbor joining analyses, the genetic resources were divided into two groups. The range of genetic dissimilarity in the analysed collection was in the range of 0.00-1.00. The high level of dissimilarity between the accessions was documented by the high WAM value (33.82%). Bayesian clustering algorithms were performed in the STRUCTURE 2.3.4 software. The number of clusters was estimated at K = 2. The accessions were classified according to Q1/Q2 values. The low average values of the parameters Fst_1 (0.3482), Fst_2 (0.1916), and parameter alpha (0.0602) indicated substantial mating barriers between varieties and reproductive isolation due to the limited exchange of genetic resources between breeders. These results demonstrated the importance of extensive collections of genetic resources for the maintenance of genetic diversity and indicated considerable genetic differentiation among accessions.
- Klíčová slova
- SSR, breeding, genetic structure, induced mutagenesis, molecular markers,
- Publikační typ
- časopisecké články MeSH
Deciduous forests form the dominant natural vegetation of Europe today, but were restricted to small refugia during Pleistocene cold stages, implying an evolutionary past shaped by recurrent range contractions and expansions. Cold-stage forest refugia were probably widespread in southern and central Europe, with the northwestern Balkan Peninsula being of particular importance. However, the actual number and location of deciduous forest refugia, as well as the connections between them, remain disputed. Here, we address the evolutionary dynamics of the deciduous forest understorey species Euphorbia carniolica as a proxy for past forest dynamics. To do so, we obtained genomic and morphometric data from populations representing the species' entire range, investigated phylogenetic position and intraspecific genetic variation, tested explicit demographic scenarios and applied species distribution models. Our data support two disjoint groups linked to separate refugia on the northwestern and central Balkan Peninsula. We find that genetic differentiation between groups started in the early Pleistocene via vicariance, suggesting a larger distribution in the past. Both refugia acted as sources for founder events to the southeastern Alps and the Carpathians; the latter were likely colonised before the last cold stage. In line with traditional views on the pre-Pleistocene origin of many southeastern European deciduous forest species, the origin of E. carniolica was dated to the late Pliocene. The fact that E. carniolica evolved at a time when a period of continuous forestation was ending in much of Eurasia provides an interesting biogeographical perspective on the past links between Eurasian deciduous forests and their biota.
- Klíčová slova
- Alps, angiosperms, demographic modelling, forest understorey, glacial refugia, phylogeography,
- MeSH
- Euphorbia * genetika MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- genetická variace genetika MeSH
- haplotypy MeSH
- lesy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Balkánský poloostrov MeSH
- Evropa MeSH