Nejvíce citovaný článek - PubMed ID 36421690
Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer's Disease and Identifying Promising Drug Targets
The neurotoxicity of phosphorylated tau protein (P-tau) and mitochondrial dysfunction play a significant role in the pathophysiology of Alzheimer's disease (AD). In vitro studies of the effects of P-tau oligomers on mitochondrial bioenergetics and reactive oxygen species production will allow us to evaluate the direct influence of P-tau on mitochondrial function. We measured the in vitro effect of P-tau oligomers on oxygen consumption and hydrogen peroxide production in isolated brain mitochondria. An appropriate combination of specific substrates and inhibitors of the phosphorylation pathway enabled the measurement and functional analysis of the effect of P-tau on mitochondrial respiration in defined coupling control states achieved in complex I-, II-, and I&II-linked electron transfer pathways. At submicromolar P-tau concentrations, we found no significant effect of P-tau on either mitochondrial respiration or hydrogen peroxide production in different respiratory states. The titration of P-tau showed a nonsignificant dose-dependent decrease in hydrogen peroxide production for complex I- and I&II-linked pathways. An insignificant in vitro effect of P-tau oligomers on both mitochondrial respiration and hydrogen peroxide production indicates that P-tau-induced mitochondrial dysfunction in AD is not due to direct effects of P-tau on the efficiency of the electron transport chain and on the production of reactive oxygen species.
- Klíčová slova
- Alzheimer’s disease, hydrogen peroxide, isolated mitochondria, mitochondrial dysfunction, phosphorylated tau, respiratory state,
- MeSH
- buněčné dýchání MeSH
- fosforylace MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mitochondrie * metabolismus MeSH
- mozek metabolismus MeSH
- peroxid vodíku * metabolismus MeSH
- proteiny tau * metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- spotřeba kyslíku MeSH
- transport elektronů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peroxid vodíku * MeSH
- proteiny tau * MeSH
- reaktivní formy kyslíku MeSH
The progress in understanding the pathogenesis and treatment of Alzheimer's disease (AD) is based on the recognition of the primary causes of the disease, which can be deduced from the knowledge of risk factors and biomarkers measurable in the early stages of the disease. Insights into the risk factors and the time course of biomarker abnormalities point to a role for the connection of amyloid beta (Aβ) pathology, tau pathology, mitochondrial dysfunction, and oxidative stress in the onset and development of AD. Coenzyme Q10 (CoQ10) is a lipid antioxidant and electron transporter in the mitochondrial electron transport system. The availability and activity of CoQ10 is crucial for proper mitochondrial function and cellular bioenergetics. Based on the mitochondrial hypothesis of AD and the hypothesis of oxidative stress, the regulation of the efficiency of the oxidative phosphorylation system by means of CoQ10 can be considered promising in restoring the mitochondrial function impaired in AD, or in preventing the onset of mitochondrial dysfunction and the development of amyloid and tau pathology in AD. This review summarizes the knowledge on the pathophysiology of AD, in which CoQ10 may play a significant role, with the aim of evaluating the perspective of the pharmacotherapy of AD with CoQ10 and its analogues.
- Klíčová slova
- Alzheimer’s disease, coenzyme Q10, drug, mitochondrial dysfunction, oxidative stress,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mitochondrial dysfunction is an important cellular hallmark of aging and neurodegeneration. Platelets are a useful model to study the systemic manifestations of mitochondrial dysfunction. To evaluate the age dependence of mitochondrial parameters, citrate synthase activity, respiratory chain complex activity, and oxygen consumption kinetics were assessed. The effect of cognitive impairment was examined by comparing the age dependence of mitochondrial parameters in healthy individuals and those with neuropsychiatric disease. The study found a significant negative slope of age-dependence for both the activity of individual mitochondrial enzymes (citrate synthase and complex II) and parameters of mitochondrial respiration in intact platelets (routine respiration, maximum capacity of electron transport system, and respiratory rate after complex I inhibition). However, there was no significant difference in the age-related changes of mitochondrial parameters between individuals with and without cognitive impairment. These findings highlight the potential of measuring mitochondrial respiration in intact platelets as a means to assess age-related mitochondrial dysfunction. The results indicate that drugs and interventions targeting mitochondrial respiration may have the potential to slow down or eliminate certain aging and neurodegenerative processes. Mitochondrial respiration in platelets holds promise as a biomarker of aging, irrespective of the degree of cognitive impairment.
- Klíčová slova
- aging, cognitive decline, mitochondria, mitochondrial respiration, neurodegenerative disease, neuroinflammation, neuroplasticity, oxidative stress, platelet, respiratory chain complex,
- Publikační typ
- časopisecké články MeSH