Nejvíce citovaný článek - PubMed ID 36770034
Effect of Digestate Modified with Amendments on Soil Health and Plant Biomass under Varying Experimental Durations
Agricultural practices introduce pharmaceutical (PhAC) residues into the terrestrial environment, potentially endangering agricultural crops and human health. This study aimed to evaluate various aspects related to the presence of pharmaceuticals in the lettuce-soil system, including bioconcentration factors (BCFs), translocation factors (TFs), ecotoxicological effects, the influence of biochar on the PhAC bioavailability, persistence in soil, and associated environmental and health risks. Lettuce (Lactuca sativa L.) was exposed to a mixture of 25 PhACs in two scenarios: initially contaminated soil (ranging from 0 to 10,000 ng·g-1) and soil irrigated with contaminated water (ranging from 0 to 1000 μg·L-1) over a 28-day period. The findings revealed a diverse range of BCFs (0.068-3.7) and TFs (0.032-0.58), indicating the uptake and translocation potential of pharmaceuticals by lettuce. Significant ecotoxicological effects on L. sativa, including weight change and increased mortality, were observed (p < 0.05). Interestingly, biochar did not significantly affect PhAC uptake by L. sativa (p > 0.05), while it significantly influenced the soil degradation kinetics of 12 PhACs (p < 0.05). Additionally, the estimated daily intake of PhACs through the consumption of L. sativa suggested negligible health risks, although concerns arose regarding the potential health risks if other vegetable sources were similarly contaminated with trace residues. Furthermore, this study evaluated the environmental risk associated with the emergence of antimicrobial resistance (AMR) in soil, as medium to high. In conclusion, these findings highlight the multifaceted challenges posed by pharmaceutical contamination in agricultural environments and emphasize the importance of proactive measures to mitigate the associated risks to both environmental and human health.
- Publikační typ
- časopisecké články MeSH
In the European circular economy, agricultural practices introduce pharmaceutical (PhAC) residues into the terrestrial environment, posing a potential risk to earthworms. This study aimed to assess earthworm bioaccumulation factors (BAFs), the ecotoxicological effects of PhACs, the impact of biochar on PhAC bioavailability to earthworms, and their persistence in soil and investigate earthworm uptake mechanisms along with the spatial distribution of PhACs. Therefore, earthworms were exposed to contaminated soil for 21 days. The results revealed that BAFs ranged from 0.0216 to 0.329, with no significant ecotoxicological effects on earthworm weight or mortality (p > 0.05). Biochar significantly influenced the uptake of 14 PhACs on the first day (p < 0.05), with diminishing effects over time, and affected significantly the soil-degradation kinetics of 16 PhACs. Moreover, MALDI-MS analysis revealed that PhAC uptake occurs through both the dermal and oral pathways, as pharmaceuticals were distributed throughout the entire earthworm tissue without specific localization. In conclusion, this study suggests ineffective PhAC accumulation in earthworms, highlights the influence of biochar on PhAC degradation rates in soil, and suggests that uptake can occur through both earthworm skin and oral ingestion.
- Klíčová slova
- Biochar, Earthworms, MALDI-MS, Mass spectrometry, Pharmaceutical uptake, QuEChERS, Liquid chromatography, Soil pollution,
- MeSH
- biologická dostupnost MeSH
- dřevěné a živočišné uhlí * chemie MeSH
- kapalinová chromatografie-hmotnostní spektrometrie MeSH
- látky znečišťující půdu * MeSH
- léčivé přípravky metabolismus MeSH
- Oligochaeta * MeSH
- půda * chemie MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biochar MeSH Prohlížeč
- dřevěné a živočišné uhlí * MeSH
- látky znečišťující půdu * MeSH
- léčivé přípravky MeSH
- půda * MeSH