Nejvíce citovaný článek - PubMed ID 30906284
Agricultural practices introduce pharmaceutical (PhAC) residues into the terrestrial environment, potentially endangering agricultural crops and human health. This study aimed to evaluate various aspects related to the presence of pharmaceuticals in the lettuce-soil system, including bioconcentration factors (BCFs), translocation factors (TFs), ecotoxicological effects, the influence of biochar on the PhAC bioavailability, persistence in soil, and associated environmental and health risks. Lettuce (Lactuca sativa L.) was exposed to a mixture of 25 PhACs in two scenarios: initially contaminated soil (ranging from 0 to 10,000 ng·g-1) and soil irrigated with contaminated water (ranging from 0 to 1000 μg·L-1) over a 28-day period. The findings revealed a diverse range of BCFs (0.068-3.7) and TFs (0.032-0.58), indicating the uptake and translocation potential of pharmaceuticals by lettuce. Significant ecotoxicological effects on L. sativa, including weight change and increased mortality, were observed (p < 0.05). Interestingly, biochar did not significantly affect PhAC uptake by L. sativa (p > 0.05), while it significantly influenced the soil degradation kinetics of 12 PhACs (p < 0.05). Additionally, the estimated daily intake of PhACs through the consumption of L. sativa suggested negligible health risks, although concerns arose regarding the potential health risks if other vegetable sources were similarly contaminated with trace residues. Furthermore, this study evaluated the environmental risk associated with the emergence of antimicrobial resistance (AMR) in soil, as medium to high. In conclusion, these findings highlight the multifaceted challenges posed by pharmaceutical contamination in agricultural environments and emphasize the importance of proactive measures to mitigate the associated risks to both environmental and human health.
- Publikační typ
- časopisecké články MeSH
In the European circular economy, agricultural practices introduce pharmaceutical (PhAC) residues into the terrestrial environment, posing a potential risk to earthworms. This study aimed to assess earthworm bioaccumulation factors (BAFs), the ecotoxicological effects of PhACs, the impact of biochar on PhAC bioavailability to earthworms, and their persistence in soil and investigate earthworm uptake mechanisms along with the spatial distribution of PhACs. Therefore, earthworms were exposed to contaminated soil for 21 days. The results revealed that BAFs ranged from 0.0216 to 0.329, with no significant ecotoxicological effects on earthworm weight or mortality (p > 0.05). Biochar significantly influenced the uptake of 14 PhACs on the first day (p < 0.05), with diminishing effects over time, and affected significantly the soil-degradation kinetics of 16 PhACs. Moreover, MALDI-MS analysis revealed that PhAC uptake occurs through both the dermal and oral pathways, as pharmaceuticals were distributed throughout the entire earthworm tissue without specific localization. In conclusion, this study suggests ineffective PhAC accumulation in earthworms, highlights the influence of biochar on PhAC degradation rates in soil, and suggests that uptake can occur through both earthworm skin and oral ingestion.
- Klíčová slova
- Biochar, Earthworms, MALDI-MS, Mass spectrometry, Pharmaceutical uptake, QuEChERS, Liquid chromatography, Soil pollution,
- MeSH
- biologická dostupnost MeSH
- dřevěné a živočišné uhlí * chemie MeSH
- kapalinová chromatografie-hmotnostní spektrometrie MeSH
- látky znečišťující půdu * MeSH
- léčivé přípravky metabolismus MeSH
- Oligochaeta * MeSH
- půda * chemie MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biochar MeSH Prohlížeč
- dřevěné a živočišné uhlí * MeSH
- látky znečišťující půdu * MeSH
- léčivé přípravky MeSH
- půda * MeSH
The presence of human and veterinary pharmaceuticals (PhACs) in the environment poses potential risks. To comprehensively assess these risks, robust multiresidual analytical methods are essential for determining a broad spectrum of PhAC classes in various environmental compartments (soil, plants, and soil organisms). This study optimized extraction methods for analyzing over 40 PhACs from various matrices, including soil, lettuce, and earthworms. A four-step ultrasonic extraction method with varying extraction conditions and subsequent solid phase extraction was developed for soil samples. QuEChERS methods were optimized for extracting PhACs from lettuce and earthworm samples, addressing a literature gap in these less-studied matrices. The quantification of PhACs in soil, lettuce, and earthworm extracts was performed using a single LC-MS/MS method. Following thorough method validation, earthworms and lettuce were exposed to a mixture of 27 pharmaceuticals in a soil environment. The method validation results demonstrated the robustness of these methods for a broad spectrum of PhACs. Specifically, 29 out of 42 PhACs were extracted with an average efficiency > 50% and RSD < 30% from the soil; 40 out of 42 PhACs exhibited average efficiency > 50% and %RSD < 30% from the earthworms, while 39 out of 42 PhACs showed average efficiency > 50% and RSD < 30% from the lettuce. Exposure experiments confirmed the viability of these methods for quantifying a diverse range of PhACs in different environmental compartments. This study presents three thoroughly validated methods for determining more than 40 PhACs in diverse matrices, enabling a comprehensive assessment of PhAC dissemination in the environment.
- Klíčová slova
- Liquid chromatography, Mass spectrometry, Multiresidual analytical methods, Pharmaceutical pollution, QuEChERS, Solid-phase extraction,
- MeSH
- chromatografie kapalinová MeSH
- extrakce na pevné fázi MeSH
- látky znečišťující půdu * analýza MeSH
- léčivé přípravky analýza MeSH
- Oligochaeta * MeSH
- půda * chemie MeSH
- salát (hlávkový) * chemie MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- látky znečišťující půdu * MeSH
- léčivé přípravky MeSH
- půda * MeSH
The practice of incorporating animal manure into soil is supported within the European Circular economy as a possible substitute for mineral fertilizers and will become crucial for the sustainability of agriculture. However, this practice may indirectly contribute to the dissemination of antibiotics, resistance bacteria, and resistance genes. In this study, medicated drinking water and poultry litter samples were obtained from a broiler-chick farm. The obtained poultry litter was incorporated into the soil at the experimental field site. The objectives of this research project were first to develop analytical methods able to quantify fluoroquinolones (FQs) in medicated drinking water, poultry litter, and soil samples by LC-MS; second to study the fate of these FQs in the soil environment after incorporation of poultry litter from flock medicated by enrofloxacin (ENR); and third to screen the occurrence of selected fluoroquinolone resistance encoding genes in poultry litter and soil samples (PCR analysis). FQs were quantified in the broiler farm's medicated drinking water (41.0 ± 0.3 mg∙L-1 of ENR) and poultry litter (up to 70 mg∙kg-1 of FQs). The persistence of FQs in the soil environment over 112 days was monitored and evaluated (ENR concentrations ranged from 36 μg∙kg-1 to 9 μg∙kg-1 after 100 days). The presence of resistance genes was confirmed in both poultry litter and soil samples, in agreement with the risk assessment for the selection of AMR in soil based on ENR concentrations. This work provides a new, comprehensive perspective on the entry and long-term fate of antimicrobials in the terrestrial environment and their consequences after the incorporation of poultry litter into agricultural fields.
- Klíčová slova
- Antimicrobial resistance, Fluoroquinolones, Liquid chromatography, Manure fertilization, Mass spectrometry, PCR, Solid phase extraction, Veterinary antimicrobials,
- MeSH
- antibakteriální látky analýza MeSH
- drůbež MeSH
- enrofloxacin MeSH
- farmy MeSH
- fluorochinolony * analýza MeSH
- hnůj analýza MeSH
- kur domácí metabolismus MeSH
- pitná voda * analýza MeSH
- půda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- enrofloxacin MeSH
- fluorochinolony * MeSH
- hnůj MeSH
- pitná voda * MeSH
- půda MeSH
Antibiotics are the most efficient type of therapy developed in the twentieth century. From the early 1960s to the present, the rate of discovery of new and therapeutically useful classes of antibiotics has significantly decreased. As a result of antibiotic use, novel strains emerge that limit the efficiency of therapies in patients, resulting in serious consequences such as morbidity or mortality, as well as clinical difficulties. Antibiotic resistance has created major concern and has a greater impact on global health. Horizontal and vertical gene transfers are two mechanisms involved in the spread of antibiotic resistance genes (ARGs) through environmental sources such as wastewater treatment plants, agriculture, soil, manure, and hospital-associated area discharges. Mobile genetic elements have an important part in microbe selection pressure and in spreading their genes into new microbial communities; additionally, it establishes a loop between the environment, animals, and humans. This review contains antibiotics and their resistance mechanisms, diffusion of ARGs, prevention of ARG transmission, tactics involved in microbiome identification, and therapies that aid to minimize infection, which are explored further below. The emergence of ARGs and antibiotic-resistant bacteria (ARB) is an unavoidable threat to global health. The discovery of novel antimicrobial agents derived from natural products shifts the focus from chemical modification of existing antibiotic chemical composition. In the future, metagenomic research could aid in the identification of antimicrobial resistance genes in the environment. Novel therapeutics may reduce infection and the transmission of ARGs.
- Klíčová slova
- Antibiotic resistance genes, Environments, Metagenomics, Novel therapeutics, Transmission,
- MeSH
- antagonisté receptorů pro angiotenzin MeSH
- antibakteriální látky * farmakologie MeSH
- antibiotická rezistence genetika MeSH
- bakteriální geny * MeSH
- inhibitory ACE MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antagonisté receptorů pro angiotenzin MeSH
- antibakteriální látky * MeSH
- inhibitory ACE MeSH
While the prudent and reasonable use of veterinary antimicrobial agents in food-producing animals is necessary, researchers over the decades have shown that these antimicrobial agents can spread into the environment through livestock manure and wastewater. The analysis of the occurrence of antimicrobial compounds in soil samples is of a great importance to determine potential impacts on human and animal health and the environment. In this study, an affordable, rugged and simple analytical method has been developed for the determination of twenty-nine antimicrobial compounds from five different classes (tetracyclines, fluoro(quinolones), macrolides, sulfonamides and diaminopirimidines). Liquid-liquid extraction (LLE) with extract filtration combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was the best strategy for the simultaneous determination of all analytes. The developed method was validated according to the Commission Implementing Regulation (EU) 2021/808. The limit of detections (LODs) ranged from 0.5 to 2.0 µg/kg, while the limit of quantitation (LOQ) was established at 1.0 to 20.0 µg/kg. The developed method was successfully applied for the determination of antimicrobial residues in one hundred and eighteen soil samples obtained from four European countries (Austria, Czech Republic, Estonia and Portugal). Doxycycline in the concentration levels of 9.07 µg/kg-20.6 µg/kg was detected in eight of the analysed samples. Samples were collected from areas where natural fertilizers (swine or cow manure) were applied. Our method can be efficiently used to monitor anti-microbial compounds in soil samples.
- Klíčová slova
- UHPLC-MS/MS, antimicrobial agents, environment, soil,
- MeSH
- antibakteriální látky analýza MeSH
- antiinfekční látky * MeSH
- extrakce na pevné fázi MeSH
- hnůj analýza MeSH
- lidé MeSH
- prasata MeSH
- půda MeSH
- skot MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antiinfekční látky * MeSH
- hnůj MeSH
- půda MeSH
Soil biota contribute to diverse soil ecosystem services such as greenhouse gas mitigation, carbon sequestration, pollutant degradation, plant disease suppression and nutrient acquisition for plant growth. Here, we provide detailed insight into different perturbation approaches to disentangle soil microbiome functions and to reveal the underlying mechanisms. By applying perturbation, one can generate compositional and functional shifts of complex microbial communities in a controlled way. Perturbations can reduce microbial diversity, diminish the abundance of specific microbial taxa and thereby disturb the interactions within the microbial consortia and with their eukaryotic hosts. Four different microbiome perturbation approaches, namely selective heat, specific biocides, dilution-to-extinction and genome editing are the focus of this mini-review. We also discuss the potential of perturbation approaches to reveal the tipping point at which specific soil functions are lost and to link this change to key microbial taxa involved in specific microbiome-associated phenotypes.
- MeSH
- Bacteria MeSH
- mikrobiální společenstva MeSH
- mikrobiota * genetika MeSH
- půda * MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- půda * MeSH
Ecosystems worldwide are exposed to pollutants connected to the industrial production of pharmaceuticals. The objective of this study was to study the composition and characteristics of the soil microbial communities that had been exposed to long-term selection pressure caused by the industrial production of penicillin G. Soil samples from four sites among the penicillin G production plant were analysed using 16S rRNA profiling via Illumina MiSeq platform and were compared with the control samples from four sites outside the plant. Total metagenomic DNA from the impacted soil was also used for the preparation of E. coli T1R-based fosmid library which was consequently qualitatively tested for the presence of penicillin G acylase (PGA)-encoding genes using the method of sequence homology. Analyses of alpha diversity revealed that the long-term antibiotic presence in the soil significantly increased the microbial diversity and richness in terms of Shannon diversity index (p = 0.002) and Chao estimates (p = 0.004). Principal component analysis showed that the two types of communities (on-site and control) could be separated at the phylum, class and genus level. The on-site soil was enriched in Betaproteobacteria, Deltaproteobacteria, Gemmatimonadetes, Acidobacteria and Planctomycetia, while a significant decrease in Actinobacteria was observed. Metagenomic fosmid library revealed high hit rates in identifying PGAs (14 different genes identified) and confirmed the biotechnological potential of soils impacted by anthropogenic activity. This study offers new insights into the changes in microbial communities of soils exposed to anthropogenic activity as well as indicates that those soils may represent a hotspot for biotechnologically interesting targets.
- Klíčová slova
- Antibiotic contamination, Fosmid library, Industrial production, Metagenome, Microbial consortia, Penicillin G acylase,
- MeSH
- antibakteriální látky biosyntéza MeSH
- Bacteria klasifikace genetika izolace a purifikace metabolismus MeSH
- biodiverzita MeSH
- DNA bakterií genetika MeSH
- Escherichia coli genetika MeSH
- fylogeneze MeSH
- látky znečišťující půdu MeSH
- metagenom MeSH
- metagenomika MeSH
- mikrobiota * genetika MeSH
- průmyslová mikrobiologie MeSH
- půda MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- DNA bakterií MeSH
- látky znečišťující půdu MeSH
- půda MeSH
- RNA ribozomální 16S MeSH
Antimicrobial materials are widely used for inhibition of microorganisms in the environment. It has been established that bacterial growth can be restrained by silver nanoparticles. Combining these with other antimicrobial agents, such as ZnO, may increase the antimicrobial activity and the use of carrier substrate makes the material easier to handle. In the paper, we present an antimicrobial nanocomposite based on silver nanoparticles nucleated in general silicate nanostructure ZnO·mSiO2. First, we prepared the silicate fine net nanostructure ZnO·mSiO2 with zinc content up to 30 wt% by precipitation of sodium water glass in zinc acetate solution. Silver nanoparticles were then formed within the material by photoreduction of AgNO3 on photoactive ZnO. This resulted into an Ag-ZnO·mSiO2 composite with silica gel-like morphology and the specific surface area of 250 m2/g. The composite, alongside with pure AgNO3 and clear ZnO·mSiO2, were successfully tested for antimicrobial activity on both gram-positive and gram-negative bacterial strains and yeast Candida albicans. With respect to the silver content, the minimal inhibition concentration of Ag-ZnO·mSiO2 was worse than AgNO3 only for gram-negative strains. Moreover, we found a positive synergistic antimicrobial effect between Ag and Zn agents. These properties create an efficient and easily applicable antimicrobial material in the form of powder.
- Klíčová slova
- antimicrobial effect, silver, synergistic effect, zinc oxide,
- Publikační typ
- časopisecké články MeSH