Nejvíce citovaný článek - PubMed ID 36797726
N-thiocarboxyanhydrides, amino acid-derived enzyme-activated H2S donors, enhance sperm mitochondrial activity in presence and absence of oxidative stress
Uncaria tomentosa (UT) or cat's claw, is a vine belonging to the Rubiaceae family and native to South and Central America. Various parts of the plant, including bark, showed many therapeutic activities (e.g., antioxidant and antibacterial), but the in vitro effects on gametes have still not been investigated. During boar semen storage for artificial insemination purposes, oxidative stress and bacterial contamination negatively affect sperm quality. In this study, we evaluated the tolerance of boar sperm to UT ethanolic extract at four concentrations (1.6 to 0.025 μg/mL). The analyses were carried out on sperm samples under oxidative stress, induced by H2O2 and Fe2+/Ascorbate, and during 96 h of semen storage at 17°C. The antibacterial activity of the extract (1,024 to 8 μg/mL) was tested against commercial strains and bacteria isolated from the semen. The treatments ranging from 0.4 to 0.025 μg/mL protected sperm membrane (p < 0.05) and preserved some kinetic parameters in samples under oxidative stress (Fe2+/Ascorbate). During semen storage, the extract did not show any cytotoxicity, and mean values of some sperm parameters were higher than the control group, although not significant (p > 0.05). All tested Gram-positive bacteria exhibited growth inhibition. The most frequently isolated Gram-negative bacteria from semen (i.e., Citrobacter koseri, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) also showed complete growth inhibition, while the remaining strains showed a partial decrease in growth. Taken together, our findings show that Uncaria tomentosa is a promising plant-based additive for boar semen storage.
- Klíčová slova
- antibiotics, antioxidant, cat's claw, oxidative stress, pig, plant extract, secondary metabolites, semen storage,
- Publikační typ
- časopisecké články MeSH
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule that belongs to the group of gasotransmitters along with nitric oxide (NO) and carbon monoxide (CO). H2S plays a pivotal role in male reproductive processes. It is produced in various tissues and cells of the male reproductive system, including testicular tissue, Leydig and Sertoli cells, epididymis, seminal plasma, prostate, penile tissues, and sperm cells. This review aims to summarize the knowledge about the presence and effects of H2S in male reproductive tissues and outline possible therapeutic strategies in pathological conditions related to male fertility, e. g. spermatogenetic disorders and erectile dysfunction (ED). For instance, H2S supports spermatogenesis by maintaining the integrity of the blood-testicular barrier (BTB), stimulating testosterone production, and providing cytoprotective effects. In spermatozoa, H2S modulates sperm motility, promotes sperm maturation, capacitation, and acrosome reaction, and has significant cytoprotective effects. Given its vasorelaxant effects, it supports the erection of penile tissue. These findings suggest the importance and therapeutic potential of H2S in male reproduction, paving the way for further research and potential clinical applications.
- Klíčová slova
- antioxidant, erectile function, hydrogen sulfide, male reproduction, sperm, testes, vasorelaxation,
- MeSH
- erektilní dysfunkce farmakoterapie metabolismus MeSH
- lidé MeSH
- mužská infertilita metabolismus farmakoterapie MeSH
- mužské pohlavní orgány metabolismus účinky léků MeSH
- rozmnožování * účinky léků fyziologie MeSH
- spermatogeneze * účinky léků MeSH
- spermie účinky léků metabolismus MeSH
- sulfan * metabolismus farmakologie MeSH
- testis metabolismus účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- sulfan * MeSH
BACKGROUND: Antimicrobial resistance (AMR) is nowadays a major emerging challenge for public health worldwide. The over- and misuse of antibiotics, including those for cell culture, are promoting AMR while also encouraging the research and employment of alternative drugs. The addition of antibiotics to the cell media is strongly recommended in sperm preservation, being gentamicin the most used for boar semen. Because of its continued use, several bacterial strains present in boar semen have developed resistance to this antibiotic. Antimicrobial peptides and proteins (AMPPs) are promising candidates as alternative antibiotics because their mechanism of action is less likely to promote AMR. In the present study, we tested two AMPPs (lysozyme and nisin; 50 and 500 µg/mL) as possible substitutes of gentamicin for boar semen preservation up to 48 h of storage. RESULTS: We found that both AMPPs improved sperm plasma membrane and acrosome integrity during semen storage. The highest concentration tested for lysozyme also kept the remaining sperm parameters unaltered, at 48 h of semen storage, and reduced the bacterial load at comparable levels of the samples supplemented with gentamicin (p > 0.05). On the other hand, while nisin (500 µg/mL) reduced the total Enterobacteriaceae counts, it also decreased the rapid and progressive sperm population and the seminal oxidation-reduction potential (p < 0.05). CONCLUSIONS: The protective effect of lysozyme on sperm function together with its antimicrobial activity and inborn presence in body fluids, including semen and cervical mucus, makes this enzyme a promising antimicrobial agent for boar semen preservation.
- Klíčová slova
- Antimicrobial resistance, Boar semen, Gentamicin, Lysozyme, Nisin, Sperm function,
- MeSH
- akrozom účinky léků MeSH
- antibakteriální látky * farmakologie MeSH
- antimikrobiální peptidy farmakologie MeSH
- buněčná membrána účinky léků MeSH
- gentamiciny farmakologie MeSH
- muramidasa * farmakologie MeSH
- nisin * farmakologie MeSH
- prasata MeSH
- sperma účinky léků MeSH
- spermie účinky léků MeSH
- uchování spermatu * veterinární metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- antimikrobiální peptidy MeSH
- gentamiciny MeSH
- muramidasa * MeSH
- nisin * MeSH