Most cited article - PubMed ID 38918389
Impact of whole-genome duplications on structural variant evolution in Cochlearia
Genetic variation underpins evolutionary change, but mutation accumulation increases genetic load. Various factors affect the extent of load, such as population size and breeding system, but other important determinants remain unexplored. In particular, whole-genome duplication (WGD)-a pervasive macromutation occurring broadly across Eukaryotes-remains poorly understood in terms of its impact on neutral and selective processes within populations. Using iterative forward simulations and empirical analysis of 632 short- and 16 long-read sequenced individuals of Arabidopsis arenosa (in 23 diploid and 42 natural autotetraploid populations), we measure the effects of WGD on genome-wide diversity and mutation load. Our simulations show how genetic variation gradually rises in autotetraploids due to increased mutational target size. Moreover, mutation load increases due to relaxed purifying selection as ploidies rise, when deleterious mutations are masked by additional chromosome copies. Empirical data confirm these patterns, showing significant increases in nucleotide diversity, ratios of nonsynonymous to synonymous SNPs, and numbers of indels and large structural variants in A. arenosa autotetraploids. However, a rather modest increase in load proxies together with a broad distribution and niche of autotetraploids suggests load accumulation has not yet limited their successful expansion. Overall, we demonstrate a complex interplay between neutral processes and purifying selection in shaping genetic variation following WGD and highlight ploidy as an important determinant of mutation load, genetic diversity, and therefore adaptive potential in natural populations.
- Keywords
- Arabidopsis, evolution, genetic load, genomics, natural selection,
- MeSH
- Mutation Accumulation * MeSH
- Arabidopsis * genetics MeSH
- Gene Duplication MeSH
- Genetic Load * MeSH
- Genome, Plant * MeSH
- Polymorphism, Single Nucleotide MeSH
- Evolution, Molecular MeSH
- INDEL Mutation MeSH
- Selection, Genetic MeSH
- Genomic Structural Variation MeSH
- Tetraploidy * MeSH
- Publication type
- Journal Article MeSH
Polyploidization (whole-genome duplication, WGD) is a widespread large-effect macromutation with far-reaching genomic, phenotypic, and evolutionary consequences. Yet, we do not know whether the consistent phenotypic changes that are associated with polyploidization translate into predictable changes in ecological preferences. Niche modeling studies in mixed-ploidy species provide an opportunity to compare recently originated polyploids with their lower-ploidy ancestors. However, the available isolated studies provide contrasting results and the diverse methodologies used limit generalization. Based on 25,857 georeferenced ploidy-verified occurrence data for 129 mixed-ploidy flowering plant species, we tested in a unified statistical framework whether WGD is associated with consistent changes in climatic niche and in past, current, and predicted future range size. We found that 74% of species exhibited significant niche shifts associated with ploidy transition. However, there was no consistent environmental parameter underlying ploidy differentiation across species, nor was there consistent support for polyploid range or niche expansion in a subset of 75 densely sampled species with sufficient data for modeling. Our results demonstrate that polyploidization is an important factor affecting niche evolution of a species, but the environmental parameters underlying the ploidy-related niche shifts vary from species to species, demonstrating limited predictability of the outcomes of WGD in ecological space.
- Keywords
- ecological differentiation, environmental niche modelling, meta-analysis, niche evolution, polyploidy,
- MeSH
- Biological Evolution MeSH
- Gene Duplication * MeSH
- Ecosystem * MeSH
- Genome, Plant * MeSH
- Magnoliopsida * genetics MeSH
- Ploidies MeSH
- Climate * MeSH
- Polyploidy * MeSH
- Publication type
- Journal Article MeSH
Polyploidy, the result of whole genome duplication (WGD), is widespread across the tree of life and is often associated with speciation and adaptability. It is thought that adaptation in autopolyploids (within-species polyploids) may be facilitated by increased access to genetic variation. This variation may be sourced from gene flow with sister diploids and new access to other tetraploid lineages, as well as from increased mutational targets provided by doubled DNA content. Here, we deconstruct in detail the origins of haplotypes displaying the strongest selection signals in established, successful autopolyploids, Arabidopsis lyrata and Arabidopsis arenosa. We see strong signatures of selection in 17 genes implied in meiosis, cell cycle, and transcription across all four autotetraploid lineages present in our expanded sampling of 983 sequenced genomes. Most prominent in our results is the finding that the tetraploid-characteristic haplotypes with the most robust signals of selection were completely absent in all diploid sisters. In contrast, the fine-scaled variant 'mosaics' in the tetraploids originated from highly diverse evolutionary sources. These include widespread novel reassortments of trans-specific polymorphism from diploids, new mutations, and tetraploid-specific inter-species hybridization-a pattern that is in line with the broad-scale acquisition and reshuffling of potentially adaptive variation in tetraploids.
It is normally supposed that populations of the same species should evolve shared mechanisms of adaptation to common stressors due to evolutionary constraint. Here, we describe a system of within-species local adaptation to coastal habitats, Brassica fruticulosa, and detail surprising strategic variability in adaptive responses to high salinity. These different adaptive responses in neighboring populations are evidenced by transcriptomes, diverse physiological outputs, and distinct genomic selective landscapes. In response to high salinity Northern Catalonian populations restrict root-to-shoot Na+ transport, favoring K+ uptake. Contrastingly, Central Catalonian populations accumulate Na+ in leaves and compensate for the osmotic imbalance with compatible solutes such as proline. Despite contrasting responses, both metapopulations were salinity tolerant relative to all inland accessions. To characterize the genomic basis of these divergent adaptive strategies in an otherwise non-saline-tolerant species, we generate a long-read-based genome and population sequencing of 18 populations (nine inland, nine coastal) across the B. fruticulosa species range. Results of genomic and transcriptomic approaches support the physiological observations of distinct underlying mechanisms of adaptation to high salinity and reveal potential genetic targets of these two very recently evolved salinity adaptations. We therefore provide a model of within-species salinity adaptation and reveal cryptic variation in neighboring plant populations in the mechanisms of adaptation to an important natural stressor highly relevant to agriculture.
- Keywords
- Brassicaceae, adaptation, evolution, population genomics, salinity,
- MeSH
- Brassica * genetics physiology metabolism MeSH
- Ecosystem MeSH
- Adaptation, Physiological * genetics MeSH
- Genetic Variation MeSH
- Genome, Plant MeSH
- Gene Expression Regulation, Plant MeSH
- Salinity * MeSH
- Sodium metabolism MeSH
- Salt Tolerance genetics MeSH
- Transcriptome MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Sodium MeSH
Polyploidy, the result of whole-genome duplication (WGD), is a major driver of eukaryote evolution. Yet WGDs are hugely disruptive mutations, and we still lack a clear understanding of their fitness consequences. Here, we study whether WGDs result in greater diversity of genomic structural variants (SVs) and how they influence evolutionary dynamics in a plant genus, Cochlearia (Brassicaceae). By using long-read sequencing and a graph-based pangenome, we find both negative and positive interactions between WGDs and SVs. Masking of recessive mutations due to WGDs leads to a progressive accumulation of deleterious SVs across four ploidal levels (from diploids to octoploids), likely reducing the adaptive potential of polyploid populations. However, we also discover putative benefits arising from SV accumulation, as more ploidy-specific SVs harbor signals of local adaptation in polyploids than in diploids. Together, our results suggest that SVs play diverse and contrasting roles in the evolutionary trajectories of young polyploids.