Nejvíce citovaný článek - PubMed ID 8065312
Parallel research on multiple model organisms shows that while some principles of telomere biology are conserved among all eukaryotic kingdoms, we also find some deviations that reflect different evolutionary paths and life strategies, which may have diversified after the establishment of telomerase as a primary mechanism for telomere maintenance. Much more than animals, plants have to cope with environmental stressors, including genotoxic factors, due to their sessile lifestyle. This is, in principle, made possible by an increased capacity and efficiency of the molecular systems ensuring maintenance of genome stability, as well as a higher tolerance to genome instability. Furthermore, plant ontogenesis differs from that of animals in which tissue differentiation and telomerase silencing occur during early embryonic development, and the "telomere clock" in somatic cells may act as a preventive measure against carcinogenesis. This does not happen in plants, where growth and ontogenesis occur through the serial division of apical meristems consisting of a small group of stem cells that generate a linear series of cells, which differentiate into an array of cell types that make a shoot and root. Flowers, as generative plant organs, initiate from the shoot apical meristem in mature plants which is incompatible with the human-like developmental telomere shortening. In this review, we discuss differences between human and plant telomere biology and the implications for aging, genome stability, and cell and organism survival. In particular, we provide a comprehensive comparative overview of telomere proteins acting in humans and in Arabidopsis thaliana model plant, and discuss distinct epigenetic features of telomeric chromatin in these species.
- Klíčová slova
- Arabidopsis, aging, chromatin, epigenetics, human, review, telomerase, telomere,
- MeSH
- chromatin metabolismus MeSH
- epigeneze genetická MeSH
- lidé MeSH
- rostliny metabolismus MeSH
- stárnutí buněk genetika MeSH
- telomerasa metabolismus MeSH
- telomery metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chromatin MeSH
- telomerasa MeSH
This paper examines telomeres from an evolutionary perspective. In the monocot plant order Asparagales two evolutionary switch-points in telomere sequence are known. The first occurred when the Arabidopsis-type telomere was replaced by a telomere based on a repeat motif more typical of vertebrates. The replacement is associated with telomerase activity, but the telomerase has low fidelity and this may have implications for the binding of telomeric proteins. At the second evolutionary switch-point, the telomere and its mode of synthesis are replaced by an unknown mechanism. Elsewhere in plants (Sessia, Vestia, Cestrum) and in arthropods, the telomere "typical" of the group is lost. Probably many other groups with "unusual" telomeres will be found. We question whether telomerase is indeed the original end-maintenance system and point to other candidate processes involving t-loops, t-circles, rolling circle replication and recombination. Possible evolutionary outcomes arising from the loss of telomerase activity in alternative lengthening of telomere (ALT) systems are discussed. We propose that elongation of minisatellite repeats using recombination/replication processes initially substitutes for the loss of telomerase function. Then in more established ALT groups, subtelomeric satellite repeats may replace the telomeric minisatellite repeat whilst maintaining the recombination/replication mechanisms for telomere elongation. Thereafter a retrotransposition-based end-maintenance system may become established. The influence of changing sequence motifs on the properties of the telomere cap is discussed. The DNA and protein components of telomeres should be regarded--as with any other chromosome elements--as evolving and co-evolving over time and responding to changes in the genome and to environmental stresses. We describe how telomere dysfunction, resulting in end-to-end chromosome fusions, can have a profound effect on chromosome evolution and perhaps even speciation.
- MeSH
- chromozomy rostlin genetika metabolismus MeSH
- fylogeneze MeSH
- genom rostlinný * MeSH
- minisatelitní repetice MeSH
- molekulární evoluce * MeSH
- proteiny vázající telomery fyziologie MeSH
- repetitivní sekvence nukleových kyselin MeSH
- retroelementy MeSH
- telomery genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- srovnávací studie MeSH
- Názvy látek
- proteiny vázající telomery MeSH
- retroelementy MeSH
The past decade has witnessed an explosion of knowledge concerning the structure and function of chromosome terminal structures-telomeres. Today's telomere research has advanced from a pure descriptive approach of DNA and protein components to an elementary understanding of telomere metabolism, and now to promising applications in medicine. These applications include 'passive' ones, among which the use of analysis of telomeres and telomerase (a cellular reverse transcriptase that synthesizes telomeres) for cancer diagnostics is the best known. The 'active' applications involve targeted downregulation or upregulation of telomere synthesis, either to mortalize immortal cancer cells, or to rejuvenate mortal somatic cells and tissues for cellular transplantations, respectively. This article reviews the basic data on structure and function of human telomeres and telomerase, as well as both passive and active applications of human telomere biology.
- MeSH
- buněčná diferenciace MeSH
- buněčné dělení MeSH
- lidé MeSH
- nádory enzymologie genetika patologie MeSH
- protinádorové látky farmakologie MeSH
- regulace genové exprese enzymů MeSH
- stárnutí genetika MeSH
- telomerasa analýza antagonisté a inhibitory genetika metabolismus MeSH
- telomery chemie enzymologie fyziologie MeSH
- tkáňové inženýrství MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- protinádorové látky MeSH
- telomerasa MeSH
The manner of packing of the terminal DNA loci into nucleosomes and higher order structures may strongly influence their functional interactions. Besides the structural flexibility of telomeric DNA sequences, conserved features of their chromatin including short nucleosome phasing (157 bp) and nucleosome sliding have been described previously. To gain a complementary knowledge of subtelomeres, we have analysed the chromatin structure of two subtelomeric tandem repeats from the plant Silene latifolia: X43.1 and 15Ssp. X43.1 shows two distinct nucleosome periodicities--157 and 188 bp. Preferred positions of its two nucleosomes have been mapped at both low and high resolution and the experimental results correspond to computer-predicted positions. 15Ssp is a newly-discovered sequence showing a telomere-associated position by PCR and a subtelomeric location by pulsed-field gel electrophoresis and fluorescence in situ hybridisation. Its 159 bp sequence unit shows a tandem arrangement and the presence of micrococcal nuclease-hypersensitive sites when either naked DNA or chromatin is digested. Use of a chemical nuclease results in a regular nucleosome ladder of 157 bp periodicity. Moreover, 15Ssp mononucleosomes show instability and absence of specific positioning, features typical for telomeric chromatin.
- MeSH
- DNA rostlinná chemie genetika metabolismus MeSH
- genetické matrice MeSH
- heterochromatin chemie genetika metabolismus MeSH
- hybridizace in situ fluorescenční MeSH
- konformace nukleové kyseliny * MeSH
- Magnoliopsida genetika MeSH
- mikrokoková nukleasa metabolismus MeSH
- molekulární sekvence - údaje MeSH
- nukleozomy chemie genetika metabolismus MeSH
- restrikční mapování MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- Southernův blotting MeSH
- tandemové repetitivní sekvence genetika MeSH
- telomery genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- heterochromatin MeSH
- mikrokoková nukleasa MeSH
- nukleozomy MeSH
We have examined the structure and chromatin organization of telomeres in Nicotiana tabacum. In tobacco the blocks of simple telomeric repeats (TT-TAGGG)n are many times larger than in other plants, e.g., Arabidopsis thaliana or tomato. They are resolved as multiple fragments 60-160 kb in size (in most cases 90-130 kb) on pulsed-field gel electrophoresis (PFGE) of restriction endonuclease-digested DNA. The major subtelomeric repeat of the HRS60 family forms large homogeneous blocks of a basic 180 bp motif having comparable lengths. Micrococcal nuclease (MNase) cleaves tobacco telomeric chromatin into subunits with a short repeat length of 157 +/- 5 bp; the subtelomeric heterochromatin characterized by tandemly repeated sequences of the HRS60 family is cut by MNase with a 180 bp periodicity. The monomeric and dimeric particles of telomeric and subtelomeric chromatin differ in sensitivity to MNase treatment: the telomeric particles are readily digested, producing ladders with a periodicity of 7 bp, while the subtelomeric particles appear to be rather resistant to intranucleosomal cleavage. The results presented show apparent similarities in the organization of telomeric chromatin in higher plants and mammals.