Most cited article - PubMed ID 8774780
Developmentally regulated expression of surface carbohydrate residues on larval stages of the avian schistosome Trichobilharzia szidati
The invasive larvae (cercariae) of schistosomes penetrate the skin of their definitive hosts. During the invasion, they undergo dramatic ultrastructural and physiological transitions. These changes result in the development of the subsequent stage, schistosomulum, which migrates through host tissues in close contact with host's immune system. One of the striking changes in the transforming cercariae is the shedding of their thick tegumental glycocalyx, which represents an immunoattractive structure; therefore its removal helps cercariae to avoid immune attack. A set of commercial fluorescently labeled lectin probes, their saccharide inhibitors and monoclonal antibodies against the trisaccharide Lewis-X antigen (LeX, CD15) were used to characterize changes in the surface saccharide composition of the neuropathogenic avian schistosome Trichobilharzia regenti during the transformation of cercariae to schistosomula, both in vitro and in vivo. The effect of various lectins on glycocalyx shedding was evaluated microscopically. The involvement of peptidases and their inhibitors on the shedding of glycocalyx was investigated using T. regenti recombinant cathepsin B2 and a set of peptidase inhibitors. The surface glycocalyx of T. regenti cercariae was rich in fucose and mannose/glucose residues. After the transformation of cercariae in vitro or in vivo within their specific duck host, reduction and vanishing of these epitopes was observed, and galactose/N-acetylgalactosamine emerged. The presence of LeX was not observed on the cercariae, but the antigen was gradually expressed from the anterior part of the body in the developing schistosomula. Some lectins which bind to the cercarial surface also induced secretion from the acetabular penetration glands. Seven lectins induced the shedding of glycocalyx by cercariae, among which five bound strongly to cercarial surface; the effect could be blocked by saccharide inhibitors. Mannose-binding protein, part of the lectin pathway of the complement system, also bound to cercariae and schistosomula, but had little effect on glycocalyx shedding. Our study did not confirm the involvement of proteolysis in glycocalyx shedding.
- MeSH
- Glycocalyx metabolism MeSH
- Glycosylation MeSH
- Schistosomatidae metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis.
- MeSH
- Biodiversity MeSH
- Disease Outbreaks MeSH
- Host Specificity MeSH
- Humans MeSH
- Bird Diseases parasitology transmission MeSH
- Skin Diseases, Parasitic epidemiology immunology parasitology prevention & control MeSH
- Birds MeSH
- Schistosomiasis epidemiology immunology parasitology prevention & control MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Cercariae of bird schistosomes (Trichobilharzia szidati and Trichobilharzia regenti) were mechanically stimulated to transform to schistosomula and kept in different cultivation media supplemented with duck red blood cells and/or homogenized nervous tissue. The development under in vitro conditions was compared with that in vivo, using the following characters: emptying of penetration glands, surface changes, food uptake, and growth of early schistosomula. The results show that the cultivation medium routinely used for human schistosomes is also suitable for mass production of early schistosomula of bird schistosomes, including the unique nasal species-T. regenti. The changes observed resemble those present in worms developing in vivo; therefore, the in vitro produced early schistosomula might be used for further studies of host-parasite interactions.
- MeSH
- Animal Structures parasitology MeSH
- Trematode Infections parasitology veterinary MeSH
- Culture Media chemistry MeSH
- Bird Diseases parasitology MeSH
- Nasal Cavity parasitology MeSH
- Parasitology methods MeSH
- Birds MeSH
- Schistosomatidae growth & development isolation & purification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Culture Media MeSH
Induction of penetration gland emptying by cercariae of the bird schistosomes Trichobilharzia szidati and T. regenti employing linoleic acid, linolenic acid, praziquantel and calcium ionophore A23187 showed that both postacetabular and circumacetabular cells released their content at chosen stimulant concentrations. The gland secretions consisted of soluble and insoluble parts. The former one adhering to the ground seemed to have different saccharide composition from the glands of Schistosoma mansoni. It bound labelled saccharides, thus exhibiting lectin-like activity. Protein profiles of the latter one were identical after stimulation by all four stimulants in T. szidati. The soluble secretions contained several proteolytic enzymes; 31 kDa and 33 kDa cysteine proteases were identified in E/S products of T. szidati and T. regenti, respectively. The circumacetabular glands contained a significant amount of calcium. Immunohistochemistry revealed that the origin of E/S products after in vitro stimulation is in both penetration glands and tegumental structures. No crossreactivity was observed between the bird schistosomes and a serum raised against S. mansoni elastase.
- MeSH
- Anthelmintics pharmacology MeSH
- Calcimycin pharmacology MeSH
- Exocrine Glands drug effects metabolism MeSH
- Host-Parasite Interactions physiology MeSH
- Linolenic Acids pharmacology MeSH
- Linoleic Acids pharmacology MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Praziquantel pharmacology MeSH
- Helminth Proteins chemistry metabolism MeSH
- Schistosomatidae drug effects metabolism MeSH
- In Vitro Techniques MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anthelmintics MeSH
- Calcimycin MeSH
- Linolenic Acids MeSH
- Linoleic Acids MeSH
- Praziquantel MeSH
- Helminth Proteins MeSH