OBJECTIVE: This study presents the design and synthesis of a new series of human carbonic anhydrase (hCA) inhibitors based on a 5-methyl/phenyl-7-(7'-oxycoumarin)-[1,2,4]triazolo[1,5-a]pyrimidine scaffold. METHODS: The chemical structures of novel coumarin-based triazolopyrimidines 3a-u were confirmed after using NMR and MS analyses. Their inhibitory profiles were evaluated against a panel of five hCA isoforms. Molecular docking simulations were conducted to elucidate the binding modes of compounds 3d and 3s with hCA IX and XII isoforms. Selected derivatives 3d and 3g were tested for their antiproliferative effects on the medulloblastoma HD-MB03 and the glioblastoma U87MG cell lines. Additionally, compounds 3d and 3g were evaluated alone or in combination with cisplatin (cis-Pt) for their ability to induce apoptosis in HD-MB03 cells. RESULTS: In vitro kinetic studies demonstrated that all 5-methyl triazolopyrimidine derivatives (3a-r) selectively inhibited the tumor-associated hCA isoforms (hCA IX and XII), with KI values ranging from 0.75 to 10.5 μM, while hCA I, II, IV isoforms were not significantly inhibited (KIs > 100 μM). Compound 3d emerged as the most potent and selective inhibitor, with KIs of 0.92 and 0.75 μM for hCA IX and XII, respectively. This derivative significantly suppressed cell proliferation in human brain tumor cell lines, particularly HD-MB03, when it was studied for its adjuvant effects in combination with cisplatin. CONCLUSION: In this study, we have identified compound 3d as a selective inhibitor of the isoforms hCA IX and XII, showing minimal inhibition over hCA I, II, and IV isoenzymes (selectivity indices > 100). Its moderate inhibitory effects on hCA IX and XII at submicromolar levels were paralleled by significant antiproliferative activity against HD-MB03 cells. These findings underscore the potential of compound 3d as a promising candidate for further therapeutic development, especially in combination with clinically used chemotherapeutic agents.
- Klíčová slova
- 2, 4]triazolo[1, 5-a]pyrimidine, Carbonic anhydrase inhibitors, [1, antiproliferative activity, coumarin, isoform selectivity, structure– activity relationship.,
- Publikační typ
- časopisecké články MeSH
The proper course and reproducibility of diagnostic techniques depend on narrowly defined reaction conditions, including the reaction pH. Nevertheless, numerous assays are affected by an inaccurately defined reaction pH. Buffers are sometimes suggested for use outside their useful pH ranges, which complicates the reproducibility of results because the buffering capacity is insufficient to retain the disclosed pH. Here, we focus on the comet assay lysis buffer. Comet assay is broadly used for quantifying DNA breaks in eukaryotic cells. The most widespread comet assay protocols employ lysis of the cells before electrophoresis in a buffer containing Triton X-100, a high concentration of NaCl, sodium sarcosinate, EDTA, and Tris, with some modifications. However, nearly all researchers report that they use Tris buffer at pH 10, and some report the pH of the Tris additive alone. Alternatively, others report the pH of the final lysis buffer. However, the lysis solution used in the comet assay is buffered at a pH outside the useful range of Tris. Tris-based buffers have a useful pH range of 7.0 - 9.0. The buffer composed of 10 mM Tris has pKa 8.10 at 25°C and 8.69 at 4°C. The cell lysis conditions used in nearly all modifications of comet assay protocols remain imprecise and uncritically employed. Despite the pH of the lysis buffer likely has negligible effect on the detection of DNA breaks, precise lysis conditions are highly important for the use of comet assay in the detection of base modifications, which are often unstable and sensitive to pH.
- Klíčová slova
- Comet assay, DNA damage, DNA fragmentation, nucleoid, single-cell gel electrophoresis, single-strand breaks,
- MeSH
- DNA * MeSH
- kometový test metody MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- poškození DNA * MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA * MeSH
Tumour relapse, chemotherapy resistance, and metastasis continue to be unsolved issues in cancer therapy. A recent approach has been to scrutinise drugs used in the clinic for other illnesses and modify their structure to increase selectivity to cancer cells. Chloroquine (CQ) and hydroxychloroquine (HCQ), known antimalarials, have successfully treated autoimmune and neoplastic diseases. CQ and HCQ, well-known lysosomotropic agents, induce apoptosis, downregulate autophagy, and modify the tumour microenvironment. Moreover, they affect the Toll 9/NF-κB receptor pathway, activate stress response pathways, enhance p53 activity and CXCR4-CXCL12 expression in cancer cells, which would help explain their effects in cancer treatment. These compounds can normalise the tumourassociated vasculature, promote the activation of the immune system, change the phenotype of tumour-associated macrophages (from M2 to M1), and stimulate cancer-associated fibroblasts. We aim to review the historical aspects of CQ and its derivatives and the most relevant mechanisms that support the therapeutic use of CQ and HCQ for the treatment of cancer.
- Klíčová slova
- Chloroquine, apoptosis, chemotherapy, hydroxychloroquine, metastasis, non-small cell lung cancer, repurposing drugs in oncology,
- MeSH
- antimalarika * farmakologie terapeutické užití MeSH
- chlorochin farmakologie terapeutické užití MeSH
- hydroxychlorochin * farmakologie terapeutické užití MeSH
- lidé MeSH
- lokální recidiva nádoru MeSH
- nádorové mikroprostředí MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antimalarika * MeSH
- chlorochin MeSH
- hydroxychlorochin * MeSH
BACKGROUND: Kaurane-type diterpenoids, obtained from various natural sources, have shown many biological activities, including anti-inflammatory and antitumor effects. Caracasine, an ent-kaurane diterpenoid isolated from the flowers of Croton micans, was shown to induce apoptosis in leukaemia cell lines. OBJECTIVE: The present study aimed to ascertain the compound's mechanism of cell death induction using two leukaemia cell lines, Jurkat E6.1 (T cell) and HL-60 (promyeloblast cells). METHODS: Cell death in Jurkat and HL60 cells were evaluated by flow cytometry for apoptosis with annexin-V/PI, mitochondrial membrane potential disturbance, changes in cell cycle, CD95 expression, caspase activation, Nuclear Factor kappa B inhibition, and differentiation into a neutrophil-like cell (dHL60). RESULTS: Caracasine (10 μM) increased the G0/G1 phase in Jurkat and arrested the cell cycle in the S phase in HL60. Caracasine increased CD95 expression (p<0.01 in Jurkat and p<0.05 in HL60) and caspase-8 activation (p<0.001 in Jurkat and p<0.05 in HL60). Caspase-9 was activated in both cell lines (p<0.001) along with the decline in mitochondrial Δψm (p<0.05 in Jurkat and p<0.001 in HL60). In HL60 cells, the kaurane induced neutrophil differentiation was assessed by CD40 expression and reactive oxygen species production. In Jurkat cells, caracasine inhibited the NF-κB pathway in cells pretreated with PHA to activate the NF-κB pathway, suggesting a possible role in inflammatory diseases. CONCLUSION: Caracasine induced apoptosis through the intrinsic and extrinsic pathways in both cell lines were evaluated which could be the leading structure for new anti-leukemic and anti-inflammatory drugs.
- Klíčová slova
- Caracasine, NF-κB, apoptosis, caracasine acid, caspases, cell cycle, differentiation, kaurane-type diterpenoids,
- MeSH
- apoptóza MeSH
- diterpeny kauranové * farmakologie chemie MeSH
- diterpeny * farmakologie MeSH
- HL-60 buňky MeSH
- Jurkat buňky MeSH
- leukemie * farmakoterapie MeSH
- lidé MeSH
- NF-kappa B metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- diterpeny kauranové * MeSH
- diterpeny * MeSH
- NF-kappa B MeSH
BACKGROUND: Colon cancer is the most common type of gastrointestinal cancer. Despite advances during the last two decades, the efficacy of colorectal cancer treatment is still insufficient and new anticancer agents are necessary. METHODS: In our study, colon cancer cells derived from a primary tumor (SW480) and lymph node metastasis (SW620) from the same patient were used and compared. The effect of flubendazole (FLU) on cell adhesion and migration was monitored using the x-CELLigence Real-Time Cell Analysis system. Expressions of molecules involved in adhesion and migration were analyzed using RT-PCR and western blot. Furthermore, RNA silencing of nuclear factor-κB in SW620 cells was used to determine the involvement of the NF-κB p65 regulation pathway in FLU action. RESULTS: FLU significantly suppressed the adhesion of SW480 cells and reduced the expression of adhesion markers (ICAM-1, αE-catenin; β-catenin; integrin α5 and β1). Moreover, a significant anti-migratory potential of FLU was manifested in the SW620 cells. In addition, FLU suppressed the phosphorylation of NF-κB p65 and potentiated the suppression of several metastatic markers (ICAM-1, EpCAM, integrin α5, β1, α-tubulin) caused by NF-κB p65 silencing. CONCLUSION: FLU has a significant anti-migratory effect in intestinal cancer cell SW480 and its lymph node metastatic cells SW620. FLU decreases the expression of some proteins involved in metastatic processes and inhibits activation of NF-κB p65.
- Klíčová slova
- Colon cancer, RNA silencing, adhesion, flubendazole, metastasis, migration.,
- MeSH
- buněčná adheze účinky léků MeSH
- lidé MeSH
- mebendazol analogy a deriváty chemie farmakologie MeSH
- molekulární struktura MeSH
- nádorové buňky kultivované MeSH
- nádory tračníku farmakoterapie patologie MeSH
- pohyb buněk účinky léků MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemie farmakologie MeSH
- screeningové testy protinádorových léčiv MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- flubendazole MeSH Prohlížeč
- mebendazol MeSH
- protinádorové látky MeSH
Natural products are often used in drug development due to their ability to form unique and diverse chemical structures. Coumestans are polycyclic aromatic plant secondary metabolites containing a coumestan moiety, which consists of a benzoxole fused to a chromen-2-one to form 1-Benzoxolo[3,2-c]chromen-6-one. These natural compounds are known for large number of biological activities. Many of their biological effects can be attributed to their action as phytoestrogens and polyphenols. In the last decade, anticancer effects of these compounds have been described in vitro but there is only limited number of studies based on models in vivo. More information concerning their in vivo bioavailability, stability, metabolism, toxicity, estrogenicity, cellular targets and drug interactions is therefore needed to proceed further to clinical studies. This review focuses on coumestans exhibiting anticancer properties and summarizes mechanisms of their toxicity to cancer cells. Moreover, the possible role of coumestans in cancer prevention is discussed.
- MeSH
- antikarcinogenní látky chemie metabolismus terapeutické užití MeSH
- fytoestrogeny metabolismus MeSH
- fytogenní protinádorové látky chemie metabolismus terapeutické užití MeSH
- kumariny chemie metabolismus terapeutické užití MeSH
- lidé MeSH
- nádory farmakoterapie prevence a kontrola MeSH
- rostliny chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antikarcinogenní látky MeSH
- coumestan MeSH Prohlížeč
- fytoestrogeny MeSH
- fytogenní protinádorové látky MeSH
- kumariny MeSH
Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole) is an alkaloid that has been isolated from plants of an Apocynaceae family. It is one of the simplest naturally occurring alkaloids with a planar structure. Over the past decades, ellipticine became a very promising antitumor agent. Interaction with DNA is one of the most studied ellipticine effects on cell division. This phenomenon is not clearly explained so far. In our experiments we studied interaction of ellipticine with single-stranded and double-stranded oligonucleotides by electrochemical methods on mercury electrode. Differential pulse voltammetry was applied for ellipticine (Elli) and CA peak detection. Square wave voltammetry was applied for G peak detection. The effect of the interaction time and ellipticine concentrations on interactions of ellipticine with single- and double-stranded oligonucleotides was tested too.
- MeSH
- Apocynaceae chemie MeSH
- elektrochemické techniky MeSH
- elipticiny chemie MeSH
- oligonukleotidy chemie MeSH
- protinádorové látky chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- elipticiny MeSH
- ellipticine MeSH Prohlížeč
- oligonukleotidy MeSH
- protinádorové látky MeSH
The cardiac glycosides are a group of compounds isolated from plants and some animals. They have been used in therapy for heart failure for many years. The cytotoxic effect of many cardiac glycosides has been demonstrated, but the mechanism of action is very complicated and complex, and Na+/K+-ATPase surely plays a crucial role in it. On the other hand, Na+/K+-ATPase is regulated by many endogenous factors, such as hormones or FXYD proteins, whose role in regulating the cell cycle has been studied intensively. This review focuses on the role of Na+/K+-ATPase in regulating the cell growth, the cell cycle and the cell proliferation and on the involvement of cardiac glycosides in regulating Na+/K+-ATPase. The cytotoxic effect of cardiac glycosides is discussed with respect to the apoptotic mechanisms possibly induced by these compounds. Novel strategies in cancer therapy based on cardiac glycosides are discussed as are possibilities for counteracting multidrug resistance by using cardiac glycosides. The aim of this review is to present cardiac glycosides not only as pharmaceuticals used in the management of heart failure, but also as potent cytotoxic agents with potential uses in cancer treatment.
- MeSH
- cytotoxiny farmakologie terapeutické užití MeSH
- kardiotonika farmakologie terapeutické užití MeSH
- lidé MeSH
- nádory farmakoterapie enzymologie metabolismus MeSH
- protinádorové látky farmakologie terapeutické užití MeSH
- sodíko-draslíková ATPasa metabolismus MeSH
- srdeční glykosidy farmakologie terapeutické užití MeSH
- srdeční selhání farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- cytotoxiny MeSH
- kardiotonika MeSH
- protinádorové látky MeSH
- sodíko-draslíková ATPasa MeSH
- srdeční glykosidy MeSH
The roles of autophagic cell death and apoptosis induced by topoisomerase inhibitor irinotecan in colon cancer cells with deleted p53 were investigated during 48 h. We report that irinotecan-dependent cytotoxicity and proapoptotic activity were reduced in the present model while autophagy levels significantly increased. Upon p53 transfection, cell demise rates increased, with cells bearing the features of apoptosis and autophagic cell death. The subsequent studies into mechanisms of cell death process revealed the important role of Bax in mediating mitochondrial and lysosomal leakage which might serve as leading signals for both apoptosis and autophagic cell death. These results suggest that different modes of cell death in p53 null colon cancer cells treated with cytostatics (irinotecan) may be activated simultaneously. Moreover, their interactions possibly occur at several stages and aren't mutually exclusive. This might thus lead to a potential synergism with interesting therapeutic ramifications.
- MeSH
- apoptóza účinky léků fyziologie MeSH
- autofagie účinky léků fyziologie MeSH
- buňky HT-29 MeSH
- fytogenní protinádorové látky farmakologie terapeutické užití MeSH
- HCT116 buňky MeSH
- irinotekan MeSH
- kamptothecin analogy a deriváty farmakologie terapeutické užití MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádorový supresorový protein p53 nedostatek genetika MeSH
- nádory tračníku farmakoterapie genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fytogenní protinádorové látky MeSH
- irinotekan MeSH
- kamptothecin MeSH
- nádorový supresorový protein p53 MeSH