Proteins are naturally formed by domains edging their functional and structural properties. A domain out of the context of an entire protein can retain its structure and to some extent also function on its own. These properties rationalize construction of artificial fusion multidomain proteins with unique combination of various functions. Information on the specific functional and structural characteristics of individual domains in the context of new artificial fusion proteins is inevitably encoded in sequential order of composing domains defining their mutual spatial positions. So the challenges in designing new proteins with new domain combinations lie dominantly in structure/function prediction and its context dependency. Despite the enormous body of publications on artificial fusion proteins, the task of their structure/function prediction is complex and nontrivial. The degree of spatial freedom facilitated by a linker between domains and their mutual orientation driven by noncovalent interactions is beyond a simple and straightforward methodology to predict their structure with reasonable accuracy. In the presented manuscript, we tested methodology using available modeling tools and computational methods. We show that the process and methodology of such prediction are not straightforward and must be done with care even when recently introduced AlphaFold II is used. We also addressed a question of benchmarking standards for prediction of multidomain protein structures-x-ray or Nuclear Magnetic Resonance experiments. On the study of six two-domain protein chimeras as well as their composing domains and their x-ray structures selected from PDB, we conclude that the major obstacle for justified prediction is inappropriate sampling of the conformational space by the explored methods. On the other hands, we can still address particular steps of the methodology and improve the process of chimera proteins prediction.
- Klíčová slova
- 3D structure prediction, fusion proteins, molecular simulations, x-ray crystallography,
- MeSH
- proteinové domény MeSH
- proteiny * chemie MeSH
- rekombinantní fúzní proteiny * chemie MeSH
- rentgenové záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny * MeSH
- rekombinantní fúzní proteiny * MeSH
Computer simulations of biomolecules such as molecular dynamics often suffer from insufficient sampling. Due to limited computational resources, insufficient sampling prevents obtaining proper equilibrium distributions of observed properties. To deal with this problem, we proposed a simulation protocol for efficient resampling of collected off-equilibrium trajectories. These trajectories are utilized for the initial mapping of the conformational space, which is later properly resampled by the introduced Iterative Landmark-Based Umbrella Sampling (ILBUS) method. Reconstruction of static equilibrium properties is achieved by the multistate Bennett acceptance ratio (MBAR) method, which enables efficient use of simulated data. The ILBUS protocol is geometry-based and does not demand any additional collective variable or a dimensional-reduction technique. The only requirement is a set of suitably spaced reference conformations, which serve as landmarks in the mapped conformational space. Additionally, the ILBUS protocol encompasses an iterative process that optimizes the force constant used in the umbrella sampling simulation. Such tuning is an inherent feature of the protocol and does not need to be performed by the user in advance. Furthermore, even the simulations with suboptimal force constants can be used in estimates by MBAR. We demonstrate the feasibility and the performance of this approach in the study of the conformational landscape of the alanine dipeptide, met-enkephalin, and adenylate kinase.
The earliest proteins had to rely on amino acids available on early Earth before the biosynthetic pathways for more complex amino acids evolved. In extant proteins, a significant fraction of the 'late' amino acids (such as Arg, Lys, His, Cys, Trp and Tyr) belong to essential catalytic and structure-stabilizing residues. How (or if) early proteins could sustain an early biosphere has been a major puzzle. Here, we analysed two combinatorial protein libraries representing proxies of the available sequence space at two different evolutionary stages. The first is composed of the entire alphabet of 20 amino acids while the second one consists of only 10 residues (ASDGLIPTEV) representing a consensus view of plausibly available amino acids through prebiotic chemistry. We show that compact conformations resistant to proteolysis are surprisingly similarly abundant in both libraries. In addition, the early alphabet proteins are inherently more soluble and refoldable, independent of the general Hsp70 chaperone activity. By contrast, chaperones significantly increase the otherwise poor solubility of the modern alphabet proteins suggesting their coevolution with the amino acid repertoire. Our work indicates that while both early and modern amino acids are predisposed to supporting protein structure, they do so with different biophysical properties and via different mechanisms.
- Klíčová slova
- amino acid alphabet, genetic code evolution, protein sequence space, protein structure, random proteins,
- MeSH
- aminokyseliny * chemie MeSH
- prebiotika * MeSH
- proteiny chemie MeSH
- sbalování proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny * MeSH
- prebiotika * MeSH
- proteiny MeSH
Melastatin transient receptor potential (TRPM) channels belong to one of the most significant subgroups of the transient receptor potential (TRP) channel family. Here, we studied the TRPM5 member, the receptor exposed to calcium-mediated activation, resulting in taste transduction. It is known that most TRP channels are highly modulated through interactions with extracellular and intracellular agents. The binding sites for these ligands are usually located at the intracellular N- and C-termini of the TRP channels, and they can demonstrate the character of an intrinsically disordered protein (IDP), which allows such a region to bind various types of molecules. We explored the N-termini of TRPM5 and found the intracellular regions for calcium-binding proteins (CBPs) the calmodulin (CaM) and calcium-binding protein S1 (S100A1) by in vitro binding assays. Furthermore, molecular docking and molecular dynamics simulations (MDs) of the discovered complexes confirmed their known common binding interface patterns and the uniqueness of the basic residues present in the TRPM binding regions for CaM/S100A1.
- MeSH
- kalmodulin * chemie MeSH
- kationtové kanály TRPM * chemie metabolismus MeSH
- proteiny S100 metabolismus MeSH
- simulace molekulového dockingu MeSH
- vápník metabolismus MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kalmodulin * MeSH
- kationtové kanály TRPM * MeSH
- proteiny S100 MeSH
- vápník MeSH
Interactions among amino acid residues are the principal contributor to the stability of the three-dimensional structure of a protein. The Amino Acid Interactions (INTAA) web server (https://bioinfo.uochb.cas.cz/INTAA/) has established itself as a unique computational resource, which enables users to calculate the contribution of individual residues in a biomolecular structure to its total energy using a molecular mechanical scoring function. In this update, we describe major additions to the web server which help solidify its position as a robust, comprehensive resource for biomolecular structure analysis. Importantly, a new continuum solvation model was introduced, allowing more accurate representation of electrostatic interactions in aqueous media. In addition, a low-overhead pipeline for the estimation of evolutionary conservation in protein chains has been added. New visualization options were introduced as well, allowing users to easily switch between and interrelate the energetic and evolutionary views of the investigated structures.
- MeSH
- aminokyseliny chemie MeSH
- internet MeSH
- konformace proteinů * MeSH
- molekulární modely MeSH
- proteiny chemie MeSH
- software * MeSH
- statická elektřina MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- proteiny MeSH
Constantly increasing attention to bioengineered proteins has led to the rapid development of new functional targets. Here we present the biophysical and functional characteristics of the newly designed CaM/AMBN-Ct fusion protein. The two-domain artificial target consists of calmodulin (CaM) and ameloblastin C-terminus (AMBN-Ct). CaM as a well-characterized calcium ions (Ca2+) binding protein offers plenty of options in terms of Ca2+ detection in biomedicine and biotechnologies. Highly negatively charged AMBN-Ct belongs to intrinsically disordered proteins (IDPs). CaM/AMBN-Ct was designed to open new ways of communication synergies between the domains with potential functional improvement. The character and function of CaM/AMBN-Ct were explored by biophysical and molecular modelling methods. Experimental studies have revealed increased stability and preserved CaM/AMBN-Ct function. The results of molecular dynamic simulations (MDs) outlined different interface patterns between the domains with potential allosteric communication within the fusion.
- Klíčová slova
- Ameloblastin, Calmodulin, Fusion protein, Intrinsically disordered protein (IDP),
- MeSH
- kalmodulin chemie MeSH
- lidé MeSH
- molekulární modely MeSH
- proteiny zubní skloviny chemie metabolismus MeSH
- sekvence aminokyselin genetika MeSH
- vápník chemie MeSH
- vazba proteinů fyziologie MeSH
- vazebná místa fyziologie MeSH
- vnitřně neuspořádané proteiny chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AMBN protein, human MeSH Prohlížeč
- kalmodulin MeSH
- proteiny zubní skloviny MeSH
- vápník MeSH
- vnitřně neuspořádané proteiny MeSH
Ameloblastin (Ambn) as an intrinsically disordered protein (IDP) stands for an important role in the formation of enamel-the hardest biomineralized tissue commonly formed in vertebrates. The human ameloblastin (AMBN) is expressed in two isoforms: full-length isoform I (AMBN ISO I) and isoform II (AMBN ISO II), which is about 15 amino acid residues shorter than AMBN ISO I. The significant feature of AMBN-its oligomerization ability-is enabled due to a specific sequence encoded by exon 5 present at the N-terminal part in both known isoforms. In this study, we characterized AMBN ISO I and AMBN ISO II by biochemical and biophysical methods to determine their common features and differences. We confirmed that both AMBN ISO I and AMBN ISO II form oligomers in in vitro conditions. Due to an important role of AMBN in biomineralization, we further addressed the calcium (Ca2+)-binding properties of AMBN ISO I and ISO II. The binding properties of AMBN to Ca2+ may explain the role of AMBN in biomineralization and more generally in Ca2+ homeostasis processes.
- Klíčová slova
- ameloblastin, biomineralization, calcium binding, intrinsically disordered protein (IDPs), oligomerization,
- MeSH
- biologické modely MeSH
- hydrodynamika MeSH
- lidé MeSH
- multimerizace proteinu MeSH
- protein - isoformy MeSH
- proteiny vázající vápník chemie metabolismus MeSH
- proteiny zubní skloviny chemie metabolismus MeSH
- spektrální analýza MeSH
- teplota MeSH
- vápník metabolismus MeSH
- vazba proteinů MeSH
- vnitřně neuspořádané proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AMBN protein, human MeSH Prohlížeč
- protein - isoformy MeSH
- proteiny vázající vápník MeSH
- proteiny zubní skloviny MeSH
- vápník MeSH
- vnitřně neuspořádané proteiny MeSH
Intrinsically disordered proteins (IDPs) represent a distinct class of proteins and are distinguished from globular proteins by conformational plasticity, high evolvability and a broad functional repertoire. Some of their properties are reminiscent of early proteins, but their abundance in eukaryotes, functional properties and compositional bias suggest that IDPs appeared at later evolutionary stages. The spectrum of IDP properties and their determinants are still not well defined. This study compares rudimentary physicochemical properties of IDPs and globular proteins using bioinformatic analysis on the level of their native sequences and random sequence permutations, addressing the contributions of composition versus sequence as determinants of the properties. IDPs have, on average, lower predicted secondary structure contents and aggregation propensities and biased amino acid compositions. However, our study shows that IDPs exhibit a broad range of these properties. Induced fold IDPs exhibit very similar compositions and secondary structure/aggregation propensities to globular proteins, and can be distinguished from unfoldable IDPs based on analysis of these sequence properties. While amino acid composition seems to be a major determinant of aggregation and secondary structure propensities, sequence randomization does not result in dramatic changes to these properties, but for both IDPs and globular proteins seems to fine-tune the tradeoff between folding and aggregation.
- Klíčová slova
- IDP, IDR, aggregation propensity, secondary structure prediction, sequence randomization,
- Publikační typ
- časopisecké články MeSH
By combining bioinformatics with quantum-chemical calculations, we attempt to address quantitatively some of the physical principles underlying protein folding. The former allowed us to identify tripeptide sequences in existing protein three-dimensional structures with a strong preference for either helical or extended structure. The selected representatives of pro-helical and pro-extended sequences were converted into "isolated" tripeptides-capped at N- and C-termini-and these were subjected to an extensive conformational sampling and geometry optimization (typically thousands to tens of thousands of conformers for each tripeptide). For each conformer, the QM(DFT-D3)/COSMO-RS free-energy value was then calculated, Gconf(solv). The Δ Gconf(solv) is expected to provide an objective, unbiased, and quantitatively accurate measure of the conformational preference of the particular tripeptide sequence. It has been shown that irrespective of the helical vs extended preferences of the selected tripeptide sequences in context of the protein, most of the low-energy conformers of isolated tripeptides prefer the R-helical structure. Nevertheless, pro-helical tripeptides show slightly stronger helix preference than their pro-extended counterparts. Furthermore, when the sampling is repeated in the presence of a partner tripeptide to mimic the situation in a β-sheet, pro-extended tripeptides (exemplified by the VIV) show a larger free-energy benefit than pro-helical tripeptides (exemplified by the EAM). This effect is even more pronounced in a hydrophobic solvent, which mimics the less polar parts of a protein. This is in line with our bioinformatic results showing that the majority of pro-extended tripeptides are hydrophobic. The preference for a specific secondary structure by the studied tripeptides is thus governed by the plasticity to adopt to its environment. In addition, we show that most of the "naturally occurring" conformations of tripeptide sequences, i.e., those found in existing three-dimensional protein structures, are within ∼10 kcal·mol-1 from their global minima. In summary, our "ab initio" data suggest that complex protein structures may start to emerge already at the level of their small oligopeptidic units, which is in line with a hierarchical nature of protein folding.
- MeSH
- chemické modely MeSH
- konformace proteinů, alfa-helix MeSH
- konformace proteinů, beta-řetězec MeSH
- peptidy chemie MeSH
- sbalování proteinů * MeSH
- teorie funkcionálu hustoty MeSH
- termodynamika MeSH
- vodíková vazba MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- peptidy MeSH
Phosphorylation of serine, threonine, and tyrosine is one of the most frequently occurring and crucial post-translational modifications of proteins often associated with important structural and functional changes. We investigated the direct effect of phosphorylation on the intrinsic conformational preferences of amino acids as a potential trigger of larger structural events. We conducted a comparative study of force fields on terminally capped amino acids (dipeptides) as the simplest model for phosphorylation. Our bias-exchange metadynamics simulations revealed that all model dipeptides sampled a great heterogeneity of ensembles affected by introduction of mono- and dianionic phosphate groups. However, the detected changes in populations of backbone conformers and side-chain rotamers did not reveal a strong discriminatory shift in preferences, as could be anticipated for the bulky, charged phosphate group. Furthermore, the AMBER and CHARMM force fields provided inconsistent populations of individual conformers as well as net structural trends upon phosphorylation. Detailed analysis of ensembles revealed competition between hydration and formation of internal hydrogen bonds involving amide hydrogens and the phosphate group. The observed difference in hydration free energy and potential for hydrogen bonding in individual force fields could be attributed to the different partial atomic charges used in each force field and, hence, the different parametrization strategies. Nevertheless, conformational propensities and net structural changes upon phosphorylation are difficult to extract from experimental measurements, and existing experimental data provide limited guidance for force field assessment and further development.
- MeSH
- fosforylace MeSH
- konformace proteinů MeSH
- serin metabolismus MeSH
- simulace molekulární dynamiky MeSH
- threonin metabolismus MeSH
- tyrosin metabolismus MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- serin MeSH
- threonin MeSH
- tyrosin MeSH