Volatile compounds emitted by bacteria can play a significant role in interacting with microorganisms, plants, and other organisms. In this work, we studied the effect of total gaseous mixtures of organic as well as inorganic volatile compounds (VCs) and individual pure volatile organic compounds (VOCs: ketones 2-nonanone, 2-heptanone, 2-undecanone, a sulfur-containing compound dimethyl disulfide) synthesized by the rhizosphere Pseudomonas chlororaphis 449 and Serratia plymuthica IC1270 strains, the soil-borne strain P. fluorescens B-4117, and the spoiled meat isolate S. proteamaculans 94 strain on Arabidopsis thaliana plants (on growth and germination of seeds). We demonstrated that total mixtures of volatile compounds emitted by these strains grown on Luria-Bertani agar, Tryptone Soya Agar, and Potato Dextrose Agar media inhibited the A. thaliana growth. When studied bacteria grew on Murashige and Skoog (MS) agar medium, volatile mixtures produced by bacteria could stimulate the growth of plants. Volatile compounds of bacteria slowed down the germination of plant seeds; in the presence of volatile mixtures of P. fluorescens B-4117, the seeds did not germinate. Of the individual VOCs, 2-heptanone had the most potent inhibitory effect on seed germination. We also showed that the tested VOCs did not cause oxidative stress in Escherichia coli cells using specific lux-biosensors. VOCs reduced the expression of the lux operon from the promoters of the katG, oxyS, and soxS genes (whose products involved in the protection of cells from oxidative stress) caused by the action of hydrogen peroxide and paraquat, respectively.
- Keywords
- Arabidopsis thaliana, Lux-biosensors, Oxidative stress, Seed germination, Volatile compounds, Volatile organic compounds,
- MeSH
- Agar metabolism MeSH
- Escherichia coli metabolism MeSH
- Pseudomonas * genetics metabolism MeSH
- Serratia genetics metabolism MeSH
- Volatile Organic Compounds * pharmacology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 2-heptanone MeSH Browser
- Agar MeSH
- Volatile Organic Compounds * MeSH
Initially described in 1990, Pseudomonas fluorescens HK44 served as the first whole-cell bioreporter genetically endowed with a bioluminescent (luxCDABE) phenotype directly linked to a catabolic (naphthalene degradative) pathway. HK44 was the first genetically engineered microorganism to be released in the field to monitor bioremediation potential. Subsequent to that release, strain HK44 had been introduced into other solids (soils, sands), liquid (water, wastewater), and volatile environments. In these matrices, it has functioned as one of the best characterized chemically-responsive environmental bioreporters and as a model organism for understanding bacterial colonization and transport, cell immobilization strategies, and the kinetics of cellular bioluminescent emission. This review summarizes the characteristics of P. fluorescens HK44 and the extensive range of its applications with special focus on the monitoring of bioremediation processes and biosensing of environmental pollution.
- Keywords
- Pseudomonas fluorescens HK44, bioluminescence, bioreporter, biosensors, lux genes,
- MeSH
- Equipment Failure Analysis MeSH
- Biosensing Techniques instrumentation MeSH
- Biological Assay instrumentation MeSH
- Equipment Design MeSH
- Spectrometry, Fluorescence instrumentation MeSH
- Environmental Monitoring instrumentation MeSH
- Pseudomonas fluorescens drug effects physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Living cells of the lux-based bioluminescent bioreporter Pseudomonas putida TVA8 were encapsulated in a silica hydrogel attached to the distal wider end of a tapered quartz fiber. Bioluminescence of immobilized cells was induced with toluene at high (26.5 mg/L) and low (5.3 mg/L) concentrations. Initial bioluminescence maxima were achieved after >12 h. One week after immobilization, a biofilm-like layer of cells had formed on the surface of the silica gel. This resulted in shorter response times and more intensive bioluminescence maxima that appeared as rapidly as 2 h after toluene induction. Considerable second bioluminescence maxima were observed after inductions with 26.5 mg toluene/L. The second and third week after immobilization the biosensor repetitively and semiquantitatively detected toluene in buffered medium. Due to silica gel dissolution and biofilm detachment, the bioluminescent signal was decreasing 20-32 days after immobilization and completely extinguished after 32 days. The reproducible formation of a surface cell layer on the wider end of the tapered optical fiber can be translated to various whole cell bioluminescent biosensor devices and may serve as a platform for in-situ sensors.
- Keywords
- bioluminescent biosensor, encapsulation, optical fiber biosensor, silica gel, whole cell bioreporter,
- Publication type
- Journal Article MeSH