Case-based learning Dotaz Zobrazit nápovědu
Microglial cells mediate diverse homeostatic, inflammatory, and immune processes during normal development and in response to cytotoxic challenges. During these functional activities, microglial cells undergo distinct numerical and morphological changes in different tissue volumes in both rodent and human brains. However, it remains unclear how these cytostructural changes in microglia correlate with region-specific neurochemical functions. To better understand these relationships, neuroscientists need accurate, reproducible, and efficient methods for quantifying microglial cell number and morphologies in histological sections. To address this deficit, we developed a novel deep learning (DL)-based classification, stereology approach that links the appearance of Iba1 immunostained microglial cells at low magnification (20×) with the total number of cells in the same brain region based on unbiased stereology counts as ground truth. Once DL models are trained, total microglial cell numbers in specific regions of interest can be estimated and treatment groups predicted in a high-throughput manner (<1 min) using only low-power images from test cases, without the need for time and labor-intensive stereology counts or morphology ratings in test cases. Results for this DL-based automatic stereology approach on two datasets (total 39 mouse brains) showed >90% accuracy, 100% percent repeatability (Test-Retest) and 60× greater efficiency than manual stereology (<1 min vs. ∼ 60 min) using the same tissue sections. Ongoing and future work includes use of this DL-based approach to establish clear neurodegeneration profiles in age-related human neurological diseases and related animal models.
- Klíčová slova
- Classification, Deep learning, Microglia, Stereology,
- MeSH
- deep learning * MeSH
- lidé MeSH
- mikroglie * MeSH
- mozek patologie MeSH
- myši MeSH
- počet buněk metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Mobile devices and applications, which have become an integral part of our lives, are gradually used for different purposes, including learning languages in EFL classrooms. Since vocabulary plays an important role in the process of foreign language learning, the aim of this study was to explore the use of the vocabulary mobile learning application and its usefulness in blended English learning. Quantitative and qualitative approach to research was used, since the integration of both approaches created the possibility to solve complex research problem. The case study was based on the use of the developed mobile application called Angličtina Today the content of which corresponded to the language needs of the target group of students. The quantitative approach used a method of quasi-experiment aiming to achieve the pre-tests and post-test results of the students from the experimental and control groups. The results showed that the students facing blended learning, including mobile application in the process of language learning, achieved better results than the students exposed to the traditional, face-to-face education. In addition, the results revealed students' overall satisfaction with the application. The main reasons for their satisfaction were improved vocabulary knowledge, ease of use, and enhanced motivation. Based on these findings from the current study, it can be argued that the vocabulary mobile learning application proved to be useful in the process of blended English language learning.
- Klíčová slova
- English language, apps, blended learning, mobile applications, vocabulary learning,
- Publikační typ
- časopisecké články MeSH
To our knowledge, the adoption of Learning Health System (LHS) concepts or approaches for improving stroke care, patient outcomes, and value have not previously been summarized. This topical review provides a summary of the published evidence about LHSs applied to stroke, and case examples applied to different aspects of stroke care from high and low-to-middle income countries. Our attempt to systematically identify the relevant literature and obtain real-world examples demonstrated the dissemination gaps, the lack of learning and action for many of the related LHS concepts across the continuum of care but also elucidated the opportunity for continued dialogue on how to study and scale LHS advances. In the field of stroke, we found only a few published examples of LHSs and health systems globally implementing some selected LHS concepts, but the term is not common. A major barrier to identifying relevant LHS examples in stroke may be the lack of an agreed taxonomy or terminology for classification. We acknowledge that health service delivery settings that leverage many of the LHS concepts do so operationally and the lessons learned are not shared in peer-reviewed literature. It is likely that this topical review will further stimulate the stroke community to disseminate related activities and use keywords such as learning health system so that the evidence base can be more readily identified.
- Klíčová slova
- emergency medical services, ischemic attack, transient, learning health system, quality improvement, stroke,
- MeSH
- cévní mozková příhoda * MeSH
- lidé MeSH
- učící se zdravotnická organizace * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
TransCelerate reports on the results of 2019, 2020, and 2021 member company (MC) surveys on the use of intelligent automation in pharmacovigilance processes. MCs increased the number and extent of implementation of intelligent automation solutions throughout Individual Case Safety Report (ICSR) processing, especially with rule-based automations such as robotic process automation, lookups, and workflows, moving from planning to piloting to implementation over the 3 survey years. Companies remain highly interested in other technologies such as machine learning (ML) and artificial intelligence, which can deliver a human-like interpretation of data and decision making rather than just automating tasks. Intelligent automation solutions are usually used in combination with more than one technology being used simultaneously for the same ICSR process step. Challenges to implementing intelligent automation solutions include finding/having appropriate training data for ML models and the need for harmonized regulatory guidance.
- MeSH
- automatizace MeSH
- farmakovigilance * MeSH
- lidé MeSH
- strojové učení MeSH
- technologie MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Glioma is the most pernicious cancer of the nervous system, with histological grade influencing the survival of patients. Despite many studies on the multimodal treatment approach, survival time remains brief. In this study, a novel two-stage ensemble of an ensemble-type machine learning-based predictive framework for glioma detection and its histograde classification is proposed. In the proposed framework, five characteristics belonging to 135 subjects were considered: human telomerase reverse transcriptase (hTERT), chitinase-like protein (YKL-40), interleukin 6 (IL-6), tissue inhibitor of metalloproteinase-1 (TIMP-1) and neutrophil/lymphocyte ratio (NLR). These characteristics were examined using distinctive ensemble-based machine learning classifiers and combination strategies to develop a computer-aided diagnostic system for the non-invasive prediction of glioma cases and their grade. In the first stage, the analysis was conducted to classify glioma cases and control subjects. Machine learning approaches were applied in the second stage to classify the recognised glioma cases into three grades, from grade II, which has a good prognosis, to grade IV, which is also known as glioblastoma. All experiments were evaluated with a five-fold cross-validation method, and the classification results were analysed using different statistical parameters. The proposed approach obtained a high value of accuracy and other statistical parameters compared with other state-of-the-art machine learning classifiers. Therefore, the proposed framework can be utilised for designing other intervention strategies for the prediction of glioma cases and their grades.
- Klíčová slova
- Biomarkers, Data analysis, Ensemble learning, Glioma, Machine learning,
- MeSH
- gliom * diagnóza MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- nádory mozku * diagnóza MeSH
- strojové učení * MeSH
- stupeň nádoru MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Decision making on the treatment of vestibular schwannoma (VS) is mainly based on the symptoms, tumor size, patient's preference, and experience of the medical team. Here we provide objective tools to support the decision process by answering two questions: can a single checkup predict the need of active treatment?, and which attributes of VS development are important in decision making on active treatment? Using a machine-learning analysis of medical records of 93 patients, the objectives were addressed using two classification tasks: a time-independent case-based reasoning (CBR), where each medical record was treated as independent, and a personalized dynamic analysis (PDA), during which we analyzed the individual development of each patient's state in time. Using the CBR method we found that Koos classification of tumor size, speech reception threshold, and pure tone audiometry, collectively predict the need for active treatment with approximately 90% accuracy; in the PDA task, only the increase of Koos classification and VS size were sufficient. Our results indicate that VS treatment may be reliably predicted using only a small set of basic parameters, even without the knowledge of individual development, which may help to simplify VS treatment strategies, reduce the number of examinations, and increase cause effectiveness.
- MeSH
- dospělí MeSH
- klinické rozhodování * MeSH
- lidé středního věku MeSH
- lidé MeSH
- management nemoci * MeSH
- reprodukovatelnost výsledků MeSH
- řízené strojové učení MeSH
- ROC křivka MeSH
- rozhodovací stromy MeSH
- senioři MeSH
- sluch MeSH
- sluchové testy MeSH
- strojové učení * MeSH
- určení symptomu MeSH
- vestibulární schwannom diagnóza terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Acute heart failure (AHF) is a common and severe condition with a poor prognosis. Its course is often complicated by worsening renal function (WRF), exacerbating the outcome. The population of AHF patients experiencing WRF is heterogenous, and some novel possibilities for its analysis have recently emerged. Clustering is a machine learning (ML) technique that divides the population into distinct subgroups based on the similarity of cases (patients). Given that, we decided to use clustering to find subgroups inside the AHF population that differ in terms of WRF occurrence. We evaluated data from the three hundred and twelve AHF patients hospitalized in our institution who had creatinine assessed four times during hospitalization. Eighty-six variables evaluated at admission were included in the analysis. The k-medoids algorithm was used for clustering, and the quality of the procedure was judged by the Davies-Bouldin index. Three clinically and prognostically different clusters were distinguished. The groups had significantly (p = 0.004) different incidences of WRF. Inside the AHF population, we successfully discovered that three groups varied in renal prognosis. Our results provide novel insight into the AHF and WRF interplay and can be valuable for future trial construction and more tailored treatment.
- Klíčová slova
- acute heart failure, artificial intelligence, cardiorenal syndrome, clustering, machine learning,
- MeSH
- akutní nemoc MeSH
- kreatinin MeSH
- ledviny fyziologie MeSH
- lidé MeSH
- srdeční selhání * MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kreatinin MeSH
Research has shown a link between depression risk and how gamers form relationships with their in-game figure of representation, called avatar. This is reinforced by literature supporting that a gamer's connection to their avatar may provide broader insight into their mental health. Therefore, it has been argued that if properly examined, the bond between a person and their avatar may reveal information about their current or potential struggles with depression offline. To examine whether the connection with an individuals' avatars may reveal their risk for depression, longitudinal data from 565 adults/adolescents (Mage = 29.3 years, SD = 10.6) were evaluated twice (six months apart). Participants completed the User-Avatar-Bond [UAB] scale and Depression Anxiety Stress Scale to measure avatar bond and depression risk. A series of tuned and untuned artificial intelligence [AI] classifiers analyzed their responses concurrently and prospectively. This allowed the examination of whether user-avatar bond can provide cross-sectional and predictive information about depression risk. Findings revealed that AI models can learn to accurately and automatically identify depression risk cases, based on gamers' reported UAB, age, and length of gaming involvement, both at present and six months later. In particular, random forests outperformed all other AIs, while avatar immersion was shown to be the strongest training predictor. Study outcomes demonstrate that UAB can be translated into accurate, concurrent, and future, depression risk predictions via trained AI classifiers. Assessment, prevention, and practice implications are discussed in the light of these results.
- Klíčová slova
- Artificial intelligence, Avatar, Depression, Internet gaming, Machine learning,
- MeSH
- avatar * MeSH
- deprese * MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- průřezové studie MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cervical cancer is still one of the most prevalent cancers in women and a significant cause of mortality. Cytokine gene variants and socio-demographic characteristics have been reported as biomarkers for determining the cervical cancer risk in the Indian population. This study was designed to apply a machine learning-based model using these risk factors for better prognosis and prediction of cervical cancer. This study includes the dataset of cytokine gene variants, clinical and socio-demographic characteristics of normal healthy control subjects, and cervical cancer cases. Different risk factors, including demographic details and cytokine gene variants, were analysed using different machine learning approaches. Various statistical parameters were used for evaluating the proposed method. After multi-step data processing and random splitting of the dataset, machine learning methods were applied and evaluated with 5-fold cross-validation and also tested on the unseen data records of a collected dataset for proper evaluation and analysis. The proposed approaches were verified after analysing various performance metrics. The logistic regression technique achieved the highest average accuracy of 82.25% and the highest average F1-score of 82.58% among all the methods. Ridge classifiers and the Gaussian Naïve Bayes classifier achieved the highest sensitivity-85%. The ridge classifier surpasses most of the machine learning classifiers with 84.78% accuracy and 97.83% sensitivity. The risk factors analysed in this study can be taken as biomarkers in developing a cervical cancer diagnosis system. The outcomes demonstrate that the machine learning assisted analysis of cytokine gene variants and socio-demographic characteristics can be utilised effectively for predicting the risk of developing cervical cancer.
- Klíčová slova
- Artificial intelligence, Bioinformatics, Cervical cancer, Computational biology, Cytokine gene polymorphisms, Machine learning,
- MeSH
- Bayesova věta MeSH
- cytokiny genetika MeSH
- demografie MeSH
- lidé MeSH
- nádory děložního čípku * epidemiologie genetika MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data.
- Klíčová slova
- COVID-19, Domain-independent knowledge graph, Influential scholarly document prediction, Machine learning algorithms, Text mining, World health organization,
- MeSH
- algoritmy MeSH
- COVID-19 * MeSH
- jazyk (prostředek komunikace) MeSH
- lidé MeSH
- rozpoznávání automatizované * MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH