Chain elongation
Dotaz
Zobrazit nápovědu
Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation.
- MeSH
- elongace translace peptidového řetězce * MeSH
- eukaryotický iniciační faktor 4E metabolismus MeSH
- eukaryotický iniciační faktor 4G metabolismus MeSH
- iniciace translace peptidového řetězce * MeSH
- messenger RNA genetika metabolismus MeSH
- multiproteinové komplexy metabolismus MeSH
- poly A MeSH
- polyribozomy metabolismus MeSH
- proteiny vázající selen metabolismus MeSH
- proteosyntéza MeSH
- ribozomy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- eukaryotický iniciační faktor 4E MeSH
- eukaryotický iniciační faktor 4G MeSH
- messenger RNA MeSH
- multiproteinové komplexy MeSH
- poly A MeSH
- proteiny vázající selen MeSH
Elongation of the Very-Long-Chain Fatty Acids-4 (ELOVL4) enzyme that is expressed in neuronal tissues, sperm, and testes mediates biosynthesis of very-long-chain polyunsaturated fatty acids (VLC-PUFAs) from dietary long chain PUFAs (LC-PUFAs). The VLC-PUFAs are critical for neuronal and reproductive function. Therefore, mutations in ELOVL4 that affect VLC-PUFA biosynthesis contribute to retinal degenerative diseases including Autosomal Dominant Stargardt-like Macular Dystrophy (STGD3). Recent studies have also shown not only a depletion of retinal VLC-PUFAs with normal aging but also a more significant loss of VLC-PUFAs in donor eyes of patients with age-related macular degeneration (AMD). However, currently, there are no natural sources of VLC-PUFAs to be evaluated as dietary supplements for the attenuation of retinal degeneration in animal models of STGD3. Here, we report the development of a novel chemical approach for elongation of eicosapentaenoic (C20:5 n-3) and docosahexaenoic (C22:6 n-3) acids from fish oils by 6 carbon atoms to make a unique group of VLC-PUFAs, namely all-cis-hexacosa-11,14,17,20,23-pentaenoic acids (C26:5 n-3) and all-cis-octacosa-10,13,16,19,22,25-hexaenoic acids (C28:6 n-3). The three-step elongation approach that we report herein resulted in a good overall yield of up to 20.2%. This more sustainable approach also resulted in improved functional group compatibility and minimal impact on the geometrical integrity of the all-cis double bond system of the VLC-PUFAs. In addition, we also successfully used commercial deep-sea fish oil concentrate as an inexpensive material for the C6 elongation of fish oil LC-PUFAs into VLC-PUFAs, which resulted in the making of gram scales of VLC-PUFAs with an even higher isolation yield of 31.0%. The quality of fish oils and the content of oxidized lipids were key since both strongly affected the activity of the PEPPSI-IPr catalyst and ultimately the yield of coupling reactions. Downstream enzymatic interesterification was used for the first time to prepare structured glycerolipids enriched with VLC-PUFAs that could be evaluated in vivo to determine absorption and transport to target tissues relative to those of the free fatty acid forms. It turned out that in the synthesis of structured triacylglycerols and glycerophospholipids with VLC-PUFAs, the polarity of the immobilized lipase carrier and its humidity were essential.
- Klíčová slova
- ELOVL4, docosahexaenoic acid, eicosapentaenoic acid, enzymatic interesterification, fish oil concentrate, green chemistry, lipases, very-long-chain polyunsaturated fatty acids,
- MeSH
- lidé MeSH
- makulární degenerace vrozené MeSH
- mastné kyseliny analýza MeSH
- membránové proteiny * genetika MeSH
- nenasycené mastné kyseliny chemie MeSH
- retina MeSH
- rybí oleje * analýza MeSH
- sperma MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mastné kyseliny MeSH
- membránové proteiny * MeSH
- nenasycené mastné kyseliny MeSH
- rybí oleje * MeSH
Quantitative real-time polymerase chain reaction (PCR) is an accurate and sensitive technique for gene expression analysis. However, it requires data normalization using reference genes. Here we assessed the stability of eight reference genes in the labial gland and fat body of the bumblebees Bombus terrestris and Bombus lucorum of different ages. To date, no reference genes have been identified for these species. Our data show that arginine kinase (AK) and phospholipase A2 (PLA2) are the most stable genes in both tissues of B. terrestris. The most stable genes for the labial gland and fat body of B. lucorum were found to be elongation factor 1alpha (EEF1A) and PLA2.
- MeSH
- aktiny genetika MeSH
- argininkinasa genetika MeSH
- elongační faktor 1 genetika MeSH
- exokrinní žlázy metabolismus MeSH
- fosfolipasy A2 genetika MeSH
- glyceraldehyd-3-fosfátdehydrogenasy genetika MeSH
- polymerázová řetězová reakce metody MeSH
- ribozomální proteiny genetika MeSH
- tubulin genetika MeSH
- tukové těleso metabolismus MeSH
- včely genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- technické zprávy MeSH
- Názvy látek
- aktiny MeSH
- argininkinasa MeSH
- elongační faktor 1 MeSH
- fosfolipasy A2 MeSH
- glyceraldehyd-3-fosfátdehydrogenasy MeSH
- ribozomální proteiny MeSH
- tubulin MeSH
Ribosomes synthesizing proteins containing consecutive proline residues become stalled and require rescue via the action of uniquely modified translation elongation factors, EF-P in bacteria, or archaeal/eukaryotic a/eIF5A. To date, no structures exist of EF-P or eIF5A in complex with translating ribosomes stalled at polyproline stretches, and thus structural insight into how EF-P/eIF5A rescue these arrested ribosomes has been lacking. Here we present cryo-EM structures of ribosomes stalled on proline stretches, without and with modified EF-P. The structures suggest that the favored conformation of the polyproline-containing nascent chain is incompatible with the peptide exit tunnel of the ribosome and leads to destabilization of the peptidyl-tRNA. Binding of EF-P stabilizes the P-site tRNA, particularly via interactions between its modification and the CCA end, thereby enforcing an alternative conformation of the polyproline-containing nascent chain, which allows a favorable substrate geometry for peptide bond formation.
- Klíčová slova
- EF-P, RNA, a-IF5A, eIF5A, nascent chain, prolines, ribosome, single particle cryo-EM, stalling, translation elongation,
- MeSH
- elektronová kryomikroskopie MeSH
- elongační faktory chemie genetika metabolismus ultrastruktura MeSH
- Escherichia coli genetika metabolismus MeSH
- eukaryotický translační iniciační faktor 5A MeSH
- iniciační faktory chemie metabolismus MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- messenger RNA chemie genetika metabolismus MeSH
- mutace MeSH
- peptidy chemie metabolismus MeSH
- proteiny vázající RNA chemie metabolismus MeSH
- proteiny z Escherichia coli chemie genetika metabolismus ultrastruktura MeSH
- proteosyntéza MeSH
- ribozomy chemie metabolismus ultrastruktura MeSH
- RNA transferová chemie genetika metabolismus MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- elongační faktory MeSH
- factor EF-P MeSH Prohlížeč
- iniciační faktory MeSH
- messenger RNA MeSH
- peptidy MeSH
- polyproline MeSH Prohlížeč
- proteiny vázající RNA MeSH
- proteiny z Escherichia coli MeSH
- RNA transferová MeSH
The reaction of C3N(-) with acetylene was studied using three different experimental setups, a triple quadrupole mass spectrometer (Trento), a tandem quadrupole mass spectrometer (Prague), and the "CERISES" guided ion beam apparatus at Orsay. The process is of astrophysical interest because it can function as a chain elongation mechanism to produce larger anions that have been detected in Titan's ionosphere by the Cassini Plasma Spectrometer. Three major products of primary processes, C2H(-), CN(-), and C5N(-), have been identified, whereby the production of the cyanide anion is probably partly due to collisional induced dissociation. The formations of all these products show considerable reaction thresholds and also display comparatively small cross sections. Also, no strong signals of anionic products for collision energies lower than 1 eV have been observed. Ab initio calculations have been performed to identify possible pathways leading to the observed products of the title reaction and to elucidate the thermodynamics of these processes. Although the productions of CN(-) and C5N(-) are exoergic, all reaction pathways have considerable barriers. Overall, the results of these computations are in agreement with the observed reaction thresholds. Due to the existence of considerable reaction energy barriers and the small observed cross sections, the title reaction is not very likely to play a major role in the buildup of large anions in cold environments like the interstellar medium or planetary and satellite ionospheres.
- Publikační typ
- časopisecké články MeSH
In hemolymph of insect species, compounds with remarkable properties for pharmaceutical industry are present. At the first line, there were found compounds of low molecular mass, less than 1 kDa. One of such compounds, β-alanyl-tyrosine (252 Da), was isolated from larval hemolymph of some species of holometabolous insects (e.g. Neobellieria bullata). Its paralytic activity and antimicrobial properties were described until now. In this study, we present the effect of elongation of β-alanyl-tyrosine by repeating of this motive on the biological and physical properties of prepared analogues. For assessment of antimicrobial properties of these new compounds strains of Gram-positive, Gram-negative bacteria and fungi were used, we also followed the haemolytic activity and toxic effect on human cell culture HepG2. On the base of ECD spectroscopy measurement, subsequent molecular modelling and known secondary structure of original β-alanyl-tyrosine dipeptide, the secondary structures of repeating sequences of β-AY were specified. The repeating structures of β-alanyl-tyrosine show increase in antimicrobial activity; for Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, minimal inhibitory concentration was decreased from 30 to 15 mM for 2xβ-AY, 0.4 mM for 4xβ-AY and 0.25 mM for 6xβ-AY.
- Klíčová slova
- Neobellieria bullata, fleshfly, metamorphosis, sarcophagin, solid phase peptide synthesis,
- MeSH
- aminokyselinové motivy MeSH
- antiinfekční látky chemie farmakologie MeSH
- biologické toxiny chemie farmakologie MeSH
- buňky Hep G2 MeSH
- dipeptidy chemie farmakologie MeSH
- houby účinky léků MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- proliferace buněk účinky léků MeSH
- Staphylococcus aureus účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alanyltyrosine MeSH Prohlížeč
- antiinfekční látky MeSH
- biologické toxiny MeSH
- dipeptidy MeSH
Nanobubble water promotes the degradation of difficult-to-degrade organic matter, improves the activity of electron transfer systems during anaerobic digestion, and optimizes the composition of anaerobic microbial communities. Therefore, this study proposes the use of nanobubble water to improve the yield of medium chain carboxylic acids produced from cow manure by chain elongation. The experiment was divided into two stages: the first stage involved the acidification of cow manure to produce volatile acidic fatty acids as electron acceptors, and the second phase involved the addition of lactic acid as an electron donor for the chain elongation. Three experimental groups were established, and air, H2, and N2 nanobubble water were added in the second stage. Equal amounts of deionized water were added in the control group. The results showed that nanobubble water supplemented with air significantly increased the caproic acid concentration to 15.10 g/L, which was 55.03 % greater than that of the control group. The relative abundances of Bacillus and Caproiciproducens, which are involved in chain elongation, and Syntrophomonas, which is involved in electron transfer, increased. The unique ability of air nanobubble water supplemented to break down the cellulose matrix resulted in further decomposition of the recalcitrant material in cow manure. This effect subsequently increased the number of microorganisms associated with lignocellulose degradation, increasing carbohydrate metabolism and ATP-binding cassette transporter protein activity and enhancing fatty acid cycling pathways during chain elongation. Ultimately, this approach enabled the efficient production of medium chain carboxylic acids.
- Klíčová slova
- Anaerobic digestion, Chain elongation, Electron transport, Fatty acid cycle pathway, Nanobubble water,
- MeSH
- anaerobióza MeSH
- biodegradace * MeSH
- Clostridiales MeSH
- dusík chemie MeSH
- hnůj * MeSH
- kyseliny karboxylové chemie MeSH
- kyseliny mastné těkavé chemie MeSH
- nanostruktury MeSH
- skot MeSH
- transport elektronů MeSH
- voda chemie MeSH
- vodík chemie MeSH
- vzduch MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
- hnůj * MeSH
- kyseliny karboxylové MeSH
- kyseliny mastné těkavé MeSH
- lignocellulose MeSH Prohlížeč
- voda MeSH
- vodík MeSH
The inhibition of incorporation of 3H-thymidine and the changes of the rate of nascent DNA chain elongation were investigated in CHO Chinese hamster cells treated with (S)-(3-hydroxy-2-phosphonomethoxypropyl) (HPMP) and N-(2-phosphonomethoxyethyl) (PME) derivatives of adenine (A), guanine (G) and 2,6-diaminopurine (DAP). No direct correlation was observed in PME and HPMP derivatives between cytotoxicity, inhibition of 3H-thymidine incorporation and inhibition of nascent DNA chain elongation. The highest cytotoxicity and inhibition of DNA synthesis were caused by PMEG. The limited extent of inhibition of DNA elongation was encountered in the case of HPMPG and HPMPA. With PMEA, weak inhibition of elongation of DNA was observed only after a prolonged exposure (6 h). None of the investigated drugs induced DNA breaks.
- MeSH
- CHO buňky MeSH
- DNA biosyntéza MeSH
- elongace translace peptidového řetězce účinky léků MeSH
- křečci praví MeSH
- organofosforové sloučeniny farmakologie MeSH
- poškození DNA MeSH
- puriny farmakologie MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- organofosforové sloučeniny MeSH
- puriny MeSH
Translation reinitiation is a gene-specific translational control mechanism characterized by the ability of some short upstream ORFs to prevent recycling of the post-termination 40S subunit in order to resume scanning for reinitiation downstream. Its efficiency decreases with the increasing uORF length, or by the presence of secondary structures, suggesting that the time taken to translate a uORF is more critical than its length. This led to a hypothesis that some initiation factors needed for reinitiation are preserved on the 80S ribosome during early elongation. Here, using the GCN4 mRNA containing four short uORFs, we developed a novel in vivo RNA-protein Ni2+-pull down assay to demonstrate for the first time that one of these initiation factors is eIF3. eIF3 but not eIF2 preferentially associates with RNA segments encompassing two GCN4 reinitiation-permissive uORFs, uORF1 and uORF2, containing cis-acting 5΄ reinitiation-promoting elements (RPEs). We show that the preferred association of eIF3 with these uORFs is dependent on intact RPEs and the eIF3a/TIF32 subunit and sharply declines with the extended length of uORFs. Our data thus imply that eIF3 travels with early elongating ribosomes and that the RPEs interact with eIF3 in order to stabilize the mRNA-eIF3-40S post-termination complex to stimulate efficient reinitiation downstream.
- MeSH
- 5' nepřekládaná oblast MeSH
- elongace translace peptidového řetězce MeSH
- eukaryotický iniciační faktor 3 metabolismus MeSH
- genetické techniky MeSH
- iniciace translace peptidového řetězce * MeSH
- malé podjednotky ribozomu eukaryotické metabolismus MeSH
- otevřené čtecí rámce * MeSH
- regulace genové exprese * MeSH
- ribozomy metabolismus MeSH
- terminace translace peptidového řetězce MeSH
- terminační kodon MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- eukaryotický iniciační faktor 3 MeSH
- terminační kodon MeSH
Frameshifting of mRNA during translation provides a strategy to expand the coding repertoire of cells and viruses. How and where in the elongation cycle +1-frameshifting occurs remains poorly understood. We describe seven ~3.5-Å-resolution cryo-EM structures of 70S ribosome complexes, allowing visualization of elongation and translocation by the GTPase elongation factor G (EF-G). Four structures with a + 1-frameshifting-prone mRNA reveal that frameshifting takes place during translocation of tRNA and mRNA. Prior to EF-G binding, the pre-translocation complex features an in-frame tRNA-mRNA pairing in the A site. In the partially translocated structure with EF-G•GDPCP, the tRNA shifts to the +1-frame near the P site, rendering the freed mRNA base to bulge between the P and E sites and to stack on the 16S rRNA nucleotide G926. The ribosome remains frameshifted in the nearly post-translocation state. Our findings demonstrate that the ribosome and EF-G cooperate to induce +1 frameshifting during tRNA-mRNA translocation.
- MeSH
- biokatalýza MeSH
- elektronová kryomikroskopie MeSH
- elongace translace peptidového řetězce genetika MeSH
- elongační faktor G chemie genetika metabolismus MeSH
- Escherichia coli genetika metabolismus MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- messenger RNA chemie genetika metabolismus MeSH
- molekulární modely MeSH
- posun čtecího rámce na ribozómech genetika MeSH
- proteiny z Escherichia coli chemie genetika metabolismus MeSH
- ribozomy genetika metabolismus ultrastruktura MeSH
- RNA ribozomální 16S chemie genetika metabolismus MeSH
- RNA transferová chemie genetika metabolismus MeSH
- tRNA-methyltransferasy genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- elongační faktor G MeSH
- messenger RNA MeSH
- proteiny z Escherichia coli MeSH
- RNA ribozomální 16S MeSH
- RNA transferová MeSH
- TrmD protein, E coli MeSH Prohlížeč
- tRNA-methyltransferasy MeSH