Convolution Neural Network (CNN) Dotaz Zobrazit nápovědu
In recent times, the Internet of Medical Things (IoMT) is a new loomed technology, which has been deliberated as a promising technology designed for various and broadly connected networks. In an intelligent healthcare system, the framework of IoMT observes the health circumstances of the patients dynamically and responds to backings their needs, which helps detect the symptoms of critical rare body conditions based on the data collected. Metaheuristic algorithms have proven effective, robust, and efficient in deciphering real-world optimization, clustering, forecasting, classification, and other engineering problems. The emergence of extraordinary, very large-scale data being generated from various sources such as the web, sensors, and social media has led the world to the era of big data. Big data poses a new contest to metaheuristic algorithms. So, this research work presents the metaheuristic optimization algorithm for big data analysis in the IoMT using gravitational search optimization algorithm (GSOA) and reflective belief network with convolutional neural networks (DBN-CNNs). Here the data optimization has been carried out using GSOA for the collected input data. The input data were collected for the diabetes prediction with cardiac risk prediction based on the damage in blood vessels and cardiac nerves. Collected data have been classified to predict abnormal and normal diabetes range, and based on this range, the risk for a cardiac attack has been predicted using SVM. The performance analysis is made to reveal that GSOA-DBN_CNN performs well in predicting diseases. The simulation results illustrate that the GSOA-DBN_CNN model used for prediction improves accuracy, precision, recall, F1-score, and PSNR.
- MeSH
- algoritmy MeSH
- datové vědy * MeSH
- lidé MeSH
- neuronové sítě MeSH
- počítačová simulace MeSH
- sociální média * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The recent big data revolution in Genomics, coupled with the emergence of Deep Learning as a set of powerful machine learning methods, has shifted the standard practices of machine learning for Genomics. Even though Deep Learning methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are becoming widespread in Genomics, developing and training such models is outside the ability of most researchers in the field. RESULTS: Here we present ENNGene-Easy Neural Network model building tool for Genomics. This tool simplifies training of custom CNN or hybrid CNN-RNN models on genomic data via an easy-to-use Graphical User Interface. ENNGene allows multiple input branches, including sequence, evolutionary conservation, and secondary structure, and performs all the necessary preprocessing steps, allowing simple input such as genomic coordinates. The network architecture is selected and fully customized by the user, from the number and types of the layers to each layer's precise set-up. ENNGene then deals with all steps of training and evaluation of the model, exporting valuable metrics such as multi-class ROC and precision-recall curve plots or TensorBoard log files. To facilitate interpretation of the predicted results, we deploy Integrated Gradients, providing the user with a graphical representation of an attribution level of each input position. To showcase the usage of ENNGene, we train multiple models on the RBP24 dataset, quickly reaching the state of the art while improving the performance on more than half of the proteins by including the evolutionary conservation score and tuning the network per protein. CONCLUSIONS: As the role of DL in big data analysis in the near future is indisputable, it is important to make it available for a broader range of researchers. We believe that an easy-to-use tool such as ENNGene can allow Genomics researchers without a background in Computational Sciences to harness the power of DL to gain better insights into and extract important information from the large amounts of data available in the field.
Landslide susceptibility mapping (LSM) is an important decision basis for regional landslide hazard risk management, territorial spatial planning and landslide decision making. The current convolutional neural network (CNN)-based landslide susceptibility mapping models do not adequately take into account the spatial nature of texture features, and vision transformer (ViT)-based LSM models have high requirements for the amount of training data. In this study, we overcome the shortcomings of CNN and ViT by fusing these two deep learning models (bottleneck transformer network (BoTNet) and convolutional vision transformer network (ConViT)), and the fused model was used to predict the probability of landslide occurrence. First, we integrated historical landslide data and landslide evaluation factors and analysed whether there was covariance in the landslide evaluation factors. Then, the testing accuracy and generalisation ability of the CNN, ViT, BoTNet and ConViT models were compared and analysed. Finally, four landslide susceptibility mapping models were used to predict the probability of landslide occurrence in Pingwu County, Sichuan Province, China. Among them, BoTNet and ConViT had the highest accuracy, both at 87.78%, an improvement of 1.11% compared to a single model, while ConViT had the highest F1-socre at 87.64%, an improvement of 1.28% compared to a single model. The results indicate that the fusion model of CNN and ViT has better LSM performance than the single model. Meanwhile, the evaluation results of this study can be used as one of the basic tools for landslide hazard risk quantification and disaster prevention in Pingwu County.
- Klíčová slova
- attention, convolution, deep learning, landslide,
- MeSH
- geografické informační systémy MeSH
- katastrofy * MeSH
- neuronové sítě MeSH
- pravděpodobnost MeSH
- sesuvy půdy * MeSH
- Publikační typ
- časopisecké články MeSH
Manual and semi-automatic identification of artifacts and unwanted physiological signals in large intracerebral electroencephalographic (iEEG) recordings is time consuming and inaccurate. To date, unsupervised methods to accurately detect iEEG artifacts are not available. This study introduces a novel machine-learning approach for detection of artifacts in iEEG signals in clinically controlled conditions using convolutional neural networks (CNN) and benchmarks the method's performance against expert annotations. The method was trained and tested on data obtained from St Anne's University Hospital (Brno, Czech Republic) and validated on data from Mayo Clinic (Rochester, Minnesota, U.S.A). We show that the proposed technique can be used as a generalized model for iEEG artifact detection. Moreover, a transfer learning process might be used for retraining of the generalized version to form a data-specific model. The generalized model can be efficiently retrained for use with different EEG acquisition systems and noise environments. The generalized and specialized model F1 scores on the testing dataset were 0.81 and 0.96, respectively. The CNN model provides faster, more objective, and more reproducible iEEG artifact detection compared to manual approaches.
- Klíčová slova
- Artifact probability matrix (APM), Convolutional neural networks (CNN), Intracranial EEG (iEEG), Noise detection,
- MeSH
- artefakty * MeSH
- elektroencefalografie metody MeSH
- lidé MeSH
- mozek fyziologie MeSH
- neuronové sítě * MeSH
- retrospektivní studie MeSH
- strojové učení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Weather recognition is crucial due to its significant impact on various aspects of daily life, such as weather prediction, environmental monitoring, tourism, and energy production. Several studies have already conducted research on image-based weather recognition. However, previous studies have addressed few types of weather phenomena recognition from images with insufficient accuracy. In this paper, we propose a transfer learning CNN framework for classifying air temperature levels from human clothing images. The framework incorporates various deep transfer learning approaches, including DeepLabV3 Plus for semantic segmentation and others for classification such as BigTransfer (BiT), Vision Transformer (ViT), ResNet101, VGG16, VGG19, and DenseNet121. Meanwhile, we have collected a dataset called the Human Clothing Image Dataset (HCID), consisting of 10,000 images with two categories (High and Low air temperature). All the models were evaluated using various classification metrics, such as the confusion matrix, loss, precision, F1-score, recall, accuracy, and AUC-ROC. Additionally, we applied Gradient-weighted Class Activation Mapping (Grad-CAM) to emphasize significant features and regions identified by models during the classification process. The results show that DenseNet121 outperformed other models with an accuracy of 98.13%. Promising experimental results highlight the potential benefits of the proposed framework for detecting air temperature levels, aiding in weather prediction and environmental monitoring.
- Klíčová slova
- Air temperature, Classification, Deep transfer learning, Human clothing,
- MeSH
- algoritmy MeSH
- deep learning * MeSH
- lidé MeSH
- monitorování životního prostředí metody MeSH
- neuronové sítě * MeSH
- odívání * MeSH
- počasí MeSH
- počítačové zpracování obrazu metody MeSH
- teplota * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND OBJECTIVES: Cardiovascular diseases are critical diseases and need to be diagnosed as early as possible. There is a lack of medical professionals in remote areas to diagnose these diseases. Artificial intelligence-based automatic diagnostic tools can help to diagnose cardiac diseases. This work presents an automatic classification method using machine learning to diagnose multiple cardiac diseases from phonocardiogram signals. METHODS: The proposed system involves a convolutional neural network (CNN) model because of its high accuracy and robustness to automatically diagnose the cardiac disorders from the heart sounds. To improve the accuracy in a noisy environment and make the method robust, the proposed method has used data augmentation techniques for training and multi-classification of multiple cardiac diseases. RESULTS: The model has been validated both heart sound data and augmented data using n-fold cross-validation. Results of all fold have been shown reported in this work. The model has achieved accuracy on the test set up to 98.60% to diagnose multiple cardiac diseases. CONCLUSIONS: The proposed model can be ported to any computing devices like computers, single board computing processors, android handheld devices etc. To make a stand-alone diagnostic tool that may be of help in remote primary health care centres. The proposed method is non-invasive, efficient, robust, and has low time complexity making it suitable for real-time applications.
- Klíčová slova
- Cardiac signals, Data augmentation, Deep neural networks, Multi-label classification, Phonocardiogram,
- MeSH
- lidé MeSH
- nemoci srdce * diagnostické zobrazování MeSH
- neuronové sítě MeSH
- srdeční ozvy * MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Any place the human species inhabits is inevitably modified by them. One of the first features that appear everywhere, in urban areas as well as in the countryside or deep forests, are roads. Further, roads and streets in general reflect their omnipresent and significant role in our lives through the flow of goods, people, and even culture and information. However, their contribution to the public is highly influenced by their surface. Yet, research on automated road surface classification from remotely sensed data is peculiarly scarce. This work investigates the capacities of chosen convolutional neural networks (fully convolutional network (FCN), U-Net, SegNet, DeepLabv3+) on this task. We find that convolutional neural network (CNN) are capable of distinguishing between compact (asphalt, concrete) and modular (paving stones, tiles) surfaces for both roads and sidewalks on aerial data of spatial resolution of 10 cm. U-Net proved its position as the best-performing model among the tested ones, reaching an overall accuracy of nearly 92%. Furthermore, we explore the influence of adding a near-infrared band to the basic red green blue (RGB) scenes and stress where it should be used and where avoided. Overfitting strategies such as dropout and data augmentation undergo the same examination and clearly show their pros and cons. Convolutional neural networks are also compared to single-pixel based random forests and show indisputable advantage of the context awareness in convolutional neural networks, U-Net reaching almost 25% higher accuracy than random forests. We conclude that convolutional neural networks and U-Net in particular should be considered as suitable approaches for automated semantic segmentation of road surfaces on aerial imagery, while common overfitting strategies should only be used under particular conditions.
- Klíčová slova
- CNN, Convolutional neural network, Land cover detection, Remote sensing, Road surface,
- Publikační typ
- časopisecké články MeSH
Gamification is known to enhance users' participation in education and research projects that follow the citizen science paradigm. The Cosmic Ray Extremely Distributed Observatory (CREDO) experiment is designed for the large-scale study of various radiation forms that continuously reach the Earth from space, collectively known as cosmic rays. The CREDO Detector app relies on a network of involved users and is now working worldwide across phones and other CMOS sensor-equipped devices. To broaden the user base and activate current users, CREDO extensively uses the gamification solutions like the periodical Particle Hunters Competition. However, the adverse effect of gamification is that the number of artefacts, i.e., signals unrelated to cosmic ray detection or openly related to cheating, substantially increases. To tag the artefacts appearing in the CREDO database we propose the method based on machine learning. The approach involves training the Convolutional Neural Network (CNN) to recognise the morphological difference between signals and artefacts. As a result we obtain the CNN-based trigger which is able to mimic the signal vs. artefact assignments of human annotators as closely as possible. To enhance the method, the input image signal is adaptively thresholded and then transformed using Daubechies wavelets. In this exploratory study, we use wavelet transforms to amplify distinctive image features. As a result, we obtain a very good recognition ratio of almost 99% for both signal and artefacts. The proposed solution allows eliminating the manual supervision of the competition process.
- Klíčová slova
- CREDO, citizen science, convolutional neural networks, deep learning, gamification, global sensor network, image classification, image sensors,
- MeSH
- artefakty MeSH
- lidé MeSH
- neuronové sítě * MeSH
- počítačové zpracování obrazu * MeSH
- strojové učení MeSH
- vlnková analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This paper aims to address the segmentation and classification of lytic and sclerotic metastatic lesions that are difficult to define by using spinal 3D Computed Tomography (CT) images obtained from highly pathologically affected cases. As the lesions are ill-defined and consequently it is difficult to find relevant image features that would enable detection and classification of lesions by classical methods of texture and shape analysis, the problem is solved by automatic feature extraction provided by a deep Convolutional Neural Network (CNN). Our main contributions are: (i) individual CNN architecture, and pre-processing steps that are dependent on a patient data and a scan protocol - it enables work with different types of CT scans; (ii) medial axis transform (MAT) post-processing for shape simplification of segmented lesion candidates with Random Forest (RF) based meta-analysis; and (iii) usability of the proposed method on whole-spine CTs (cervical, thoracic, lumbar), which is not treated in other published methods (they work with thoracolumbar segments of spine only). Our proposed method has been tested on our own dataset annotated by two mutually independent radiologists and has been compared to other published methods. This work is part of the ongoing complex project dealing with spine analysis and spine lesion longitudinal studies.
- Klíčová slova
- CT analysis, Computer aided detection, Convolutional neural network, Spinal metastasis,
- MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory páteře diagnostické zobrazování sekundární MeSH
- neuronové sítě * MeSH
- počítačová rentgenová tomografie * MeSH
- rentgenový obraz - interpretace počítačová metody MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Wireless capsule endoscopy (WCE) is one of the most efficient methods for the examination of gastrointestinal tracts. Computer-aided intelligent diagnostic tools alleviate the challenges faced during manual inspection of long WCE videos. Several approaches have been proposed in the literature for the automatic detection and localization of anomalies in WCE images. Some of them focus on specific anomalies such as bleeding, polyp, lesion, etc. However, relatively fewer generic methods have been proposed to detect all those common anomalies simultaneously. In this paper, a deep convolutional neural network (CNN) based model 'WCENet' is proposed for anomaly detection and localization in WCE images. The model works in two phases. In the first phase, a simple and efficient attention-based CNN classifies an image into one of the four categories: polyp, vascular, inflammatory, or normal. If the image is classified in one of the abnormal categories, it is processed in the second phase for the anomaly localization. Fusion of Grad-CAM++ and a custom SegNet is used for anomalous region segmentation in the abnormal image. WCENet classifier attains accuracy and area under receiver operating characteristic of 98% and 99%. The WCENet segmentation model obtains a frequency weighted intersection over union of 81%, and an average dice score of 56% on the KID dataset. WCENet outperforms nine different state-of-the-art conventional machine learning and deep learning models on the KID dataset. The proposed model demonstrates potential for clinical applications.
- Klíčová slova
- Anomaly detection, Attention mechanism, Deep convolutional neural network, Localization, Wireless capsule endoscopy,
- MeSH
- algoritmy MeSH
- kapslová endoskopie * MeSH
- neuronové sítě MeSH
- počítačové zpracování obrazu MeSH
- ROC křivka MeSH
- strojové učení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH