Manual and semi-automatic identification of artifacts and unwanted physiological signals in large intracerebral electroencephalographic (iEEG) recordings is time consuming and inaccurate. To date, unsupervised methods to accurately detect iEEG artifacts are not available. This study introduces a novel machine-learning approach for detection of artifacts in iEEG signals in clinically controlled conditions using convolutional neural networks (CNN) and benchmarks the method's performance against expert annotations. The method was trained and tested on data obtained from St Anne's University Hospital (Brno, Czech Republic) and validated on data from Mayo Clinic (Rochester, Minnesota, U.S.A). We show that the proposed technique can be used as a generalized model for iEEG artifact detection. Moreover, a transfer learning process might be used for retraining of the generalized version to form a data-specific model. The generalized model can be efficiently retrained for use with different EEG acquisition systems and noise environments. The generalized and specialized model F1 scores on the testing dataset were 0.81 and 0.96, respectively. The CNN model provides faster, more objective, and more reproducible iEEG artifact detection compared to manual approaches.
- Keywords
- Artifact probability matrix (APM), Convolutional neural networks (CNN), Intracranial EEG (iEEG), Noise detection,
- MeSH
- Artifacts * MeSH
- Electroencephalography methods MeSH
- Humans MeSH
- Brain physiology MeSH
- Neural Networks, Computer * MeSH
- Retrospective Studies MeSH
- Machine Learning * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Any place the human species inhabits is inevitably modified by them. One of the first features that appear everywhere, in urban areas as well as in the countryside or deep forests, are roads. Further, roads and streets in general reflect their omnipresent and significant role in our lives through the flow of goods, people, and even culture and information. However, their contribution to the public is highly influenced by their surface. Yet, research on automated road surface classification from remotely sensed data is peculiarly scarce. This work investigates the capacities of chosen convolutional neural networks (fully convolutional network (FCN), U-Net, SegNet, DeepLabv3+) on this task. We find that convolutional neural network (CNN) are capable of distinguishing between compact (asphalt, concrete) and modular (paving stones, tiles) surfaces for both roads and sidewalks on aerial data of spatial resolution of 10 cm. U-Net proved its position as the best-performing model among the tested ones, reaching an overall accuracy of nearly 92%. Furthermore, we explore the influence of adding a near-infrared band to the basic red green blue (RGB) scenes and stress where it should be used and where avoided. Overfitting strategies such as dropout and data augmentation undergo the same examination and clearly show their pros and cons. Convolutional neural networks are also compared to single-pixel based random forests and show indisputable advantage of the context awareness in convolutional neural networks, U-Net reaching almost 25% higher accuracy than random forests. We conclude that convolutional neural networks and U-Net in particular should be considered as suitable approaches for automated semantic segmentation of road surfaces on aerial imagery, while common overfitting strategies should only be used under particular conditions.
- Keywords
- CNN, Convolutional neural network, Land cover detection, Remote sensing, Road surface,
- Publication type
- Journal Article MeSH
In recent times, deep learning has been widely used in agriculture fields to identify diseases in crops, weather prediction, and crop yield prediction. However, designing efficient deep learning models that are lightweight, cost-effective, and suitable for deployment on small devices remains a challenge. This paper addresses this gap by proposing a Convolutional Neural Network (CNN) architecture optimized using a Genetic Algorithm (GA) to automate the selection of critical hyperparameters, such as the number and size of filters, ensuring high performance with minimal computational overhead. In this work, we have built our own tea leaf disease dataset consisting of three different tea leaf diseases, two diseases caused by pests, and one due to pathogens (infectious organisms) and environmental conditions. The proposed genetic algorithm-based CNN achieved an accuracy rate of 97.6% on the tea leaf disease dataset. To further validate its robustness, the model was tested on two additional datasets, namely PlantVillage and Rice leaf disease dataset, achieving accuracies of 96.99% and 99%, respectively. Performances of the proposed model are also compared with several state-of-the-art deep learning models, and the results show that the proposed model outperforms several DL architectures with fewer parameters.
- Keywords
- Tea leaf disease, convolution neural network, deep learning, machine learning,
- Publication type
- Journal Article MeSH
Crop yield production could be enhanced for agricultural growth if various plant nutrition deficiencies, and diseases are identified and detected at early stages. Hence, continuous health monitoring of plant is very crucial for handling plant stress. The deep learning methods have proven its superior performances in the automated detection of plant diseases and nutrition deficiencies from visual symptoms in leaves. This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN), added upon a base convolutional neural network (CNN). Sometimes, a global feature descriptor might fail to capture the vital region of a diseased leaf, which causes inaccurate classification of disease. To address this issue, regional feature learning is crucial for a holistic feature aggregation. In this work, region-based feature summarization at multi-scales is explored using spatial pyramidal pooling for discriminative feature representation. Furthermore, a GCN is developed to capacitate learning of finer details for classifying plant diseases and insufficiency of nutrients. The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), has been evaluated on two public datasets for nutrition deficiency, and two for disease classification using four backbone CNNs. The best classification performances of the proposed PND-Net are as follows: (a) 90.00% Banana and 90.54% Coffee nutrition deficiency; and (b) 96.18% Potato diseases and 84.30% on PlantDoc datasets using Xception backbone. Furthermore, additional experiments have been carried out for generalization, and the proposed method has achieved state-of-the-art performances on two public datasets, namely the Breast Cancer Histopathology Image Classification (BreakHis 40 × : 95.50%, and BreakHis 100 × : 96.79% accuracy) and Single cells in Pap smear images for cervical cancer classification (SIPaKMeD: 99.18% accuracy). Also, the proposed method has been evaluated using five-fold cross validation and achieved improved performances on these datasets. Clearly, the proposed PND-Net effectively boosts the performances of automated health analysis of various plants in real and intricate field environments, implying PND-Net's aptness for agricultural growth as well as human cancer classification.
- Keywords
- Agriculture, Cancer classification, Convolutional neural network, Graph convolutional network, Nutrition deficiency, Plant disease, Spatial pyramid pooling,
- MeSH
- Deep Learning * MeSH
- Humans MeSH
- Plant Leaves MeSH
- Plant Diseases * MeSH
- Neural Networks, Computer * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
This paper aims to address the segmentation and classification of lytic and sclerotic metastatic lesions that are difficult to define by using spinal 3D Computed Tomography (CT) images obtained from highly pathologically affected cases. As the lesions are ill-defined and consequently it is difficult to find relevant image features that would enable detection and classification of lesions by classical methods of texture and shape analysis, the problem is solved by automatic feature extraction provided by a deep Convolutional Neural Network (CNN). Our main contributions are: (i) individual CNN architecture, and pre-processing steps that are dependent on a patient data and a scan protocol - it enables work with different types of CT scans; (ii) medial axis transform (MAT) post-processing for shape simplification of segmented lesion candidates with Random Forest (RF) based meta-analysis; and (iii) usability of the proposed method on whole-spine CTs (cervical, thoracic, lumbar), which is not treated in other published methods (they work with thoracolumbar segments of spine only). Our proposed method has been tested on our own dataset annotated by two mutually independent radiologists and has been compared to other published methods. This work is part of the ongoing complex project dealing with spine analysis and spine lesion longitudinal studies.
- Keywords
- CT analysis, Computer aided detection, Convolutional neural network, Spinal metastasis,
- MeSH
- Middle Aged MeSH
- Humans MeSH
- Spinal Neoplasms diagnostic imaging secondary MeSH
- Neural Networks, Computer * MeSH
- Tomography, X-Ray Computed * MeSH
- Radiographic Image Interpretation, Computer-Assisted methods MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Imaging, Three-Dimensional * MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND AND OBJECTIVES: Cardiovascular diseases are critical diseases and need to be diagnosed as early as possible. There is a lack of medical professionals in remote areas to diagnose these diseases. Artificial intelligence-based automatic diagnostic tools can help to diagnose cardiac diseases. This work presents an automatic classification method using machine learning to diagnose multiple cardiac diseases from phonocardiogram signals. METHODS: The proposed system involves a convolutional neural network (CNN) model because of its high accuracy and robustness to automatically diagnose the cardiac disorders from the heart sounds. To improve the accuracy in a noisy environment and make the method robust, the proposed method has used data augmentation techniques for training and multi-classification of multiple cardiac diseases. RESULTS: The model has been validated both heart sound data and augmented data using n-fold cross-validation. Results of all fold have been shown reported in this work. The model has achieved accuracy on the test set up to 98.60% to diagnose multiple cardiac diseases. CONCLUSIONS: The proposed model can be ported to any computing devices like computers, single board computing processors, android handheld devices etc. To make a stand-alone diagnostic tool that may be of help in remote primary health care centres. The proposed method is non-invasive, efficient, robust, and has low time complexity making it suitable for real-time applications.
- Keywords
- Cardiac signals, Data augmentation, Deep neural networks, Multi-label classification, Phonocardiogram,
- MeSH
- Humans MeSH
- Heart Diseases * diagnostic imaging MeSH
- Neural Networks, Computer MeSH
- Heart Sounds * MeSH
- Machine Learning MeSH
- Artificial Intelligence MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: The recent big data revolution in Genomics, coupled with the emergence of Deep Learning as a set of powerful machine learning methods, has shifted the standard practices of machine learning for Genomics. Even though Deep Learning methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are becoming widespread in Genomics, developing and training such models is outside the ability of most researchers in the field. RESULTS: Here we present ENNGene-Easy Neural Network model building tool for Genomics. This tool simplifies training of custom CNN or hybrid CNN-RNN models on genomic data via an easy-to-use Graphical User Interface. ENNGene allows multiple input branches, including sequence, evolutionary conservation, and secondary structure, and performs all the necessary preprocessing steps, allowing simple input such as genomic coordinates. The network architecture is selected and fully customized by the user, from the number and types of the layers to each layer's precise set-up. ENNGene then deals with all steps of training and evaluation of the model, exporting valuable metrics such as multi-class ROC and precision-recall curve plots or TensorBoard log files. To facilitate interpretation of the predicted results, we deploy Integrated Gradients, providing the user with a graphical representation of an attribution level of each input position. To showcase the usage of ENNGene, we train multiple models on the RBP24 dataset, quickly reaching the state of the art while improving the performance on more than half of the proteins by including the evolutionary conservation score and tuning the network per protein. CONCLUSIONS: As the role of DL in big data analysis in the near future is indisputable, it is important to make it available for a broader range of researchers. We believe that an easy-to-use tool such as ENNGene can allow Genomics researchers without a background in Computational Sciences to harness the power of DL to gain better insights into and extract important information from the large amounts of data available in the field.
Landslide susceptibility mapping (LSM) is an important decision basis for regional landslide hazard risk management, territorial spatial planning and landslide decision making. The current convolutional neural network (CNN)-based landslide susceptibility mapping models do not adequately take into account the spatial nature of texture features, and vision transformer (ViT)-based LSM models have high requirements for the amount of training data. In this study, we overcome the shortcomings of CNN and ViT by fusing these two deep learning models (bottleneck transformer network (BoTNet) and convolutional vision transformer network (ConViT)), and the fused model was used to predict the probability of landslide occurrence. First, we integrated historical landslide data and landslide evaluation factors and analysed whether there was covariance in the landslide evaluation factors. Then, the testing accuracy and generalisation ability of the CNN, ViT, BoTNet and ConViT models were compared and analysed. Finally, four landslide susceptibility mapping models were used to predict the probability of landslide occurrence in Pingwu County, Sichuan Province, China. Among them, BoTNet and ConViT had the highest accuracy, both at 87.78%, an improvement of 1.11% compared to a single model, while ConViT had the highest F1-socre at 87.64%, an improvement of 1.28% compared to a single model. The results indicate that the fusion model of CNN and ViT has better LSM performance than the single model. Meanwhile, the evaluation results of this study can be used as one of the basic tools for landslide hazard risk quantification and disaster prevention in Pingwu County.
- Keywords
- attention, convolution, deep learning, landslide,
- MeSH
- Geographic Information Systems MeSH
- Disasters * MeSH
- Neural Networks, Computer MeSH
- Probability MeSH
- Landslides * MeSH
- Publication type
- Journal Article MeSH
In recent times, the Internet of Medical Things (IoMT) is a new loomed technology, which has been deliberated as a promising technology designed for various and broadly connected networks. In an intelligent healthcare system, the framework of IoMT observes the health circumstances of the patients dynamically and responds to backings their needs, which helps detect the symptoms of critical rare body conditions based on the data collected. Metaheuristic algorithms have proven effective, robust, and efficient in deciphering real-world optimization, clustering, forecasting, classification, and other engineering problems. The emergence of extraordinary, very large-scale data being generated from various sources such as the web, sensors, and social media has led the world to the era of big data. Big data poses a new contest to metaheuristic algorithms. So, this research work presents the metaheuristic optimization algorithm for big data analysis in the IoMT using gravitational search optimization algorithm (GSOA) and reflective belief network with convolutional neural networks (DBN-CNNs). Here the data optimization has been carried out using GSOA for the collected input data. The input data were collected for the diabetes prediction with cardiac risk prediction based on the damage in blood vessels and cardiac nerves. Collected data have been classified to predict abnormal and normal diabetes range, and based on this range, the risk for a cardiac attack has been predicted using SVM. The performance analysis is made to reveal that GSOA-DBN_CNN performs well in predicting diseases. The simulation results illustrate that the GSOA-DBN_CNN model used for prediction improves accuracy, precision, recall, F1-score, and PSNR.
- MeSH
- Algorithms MeSH
- Data Science * MeSH
- Humans MeSH
- Neural Networks, Computer MeSH
- Computer Simulation MeSH
- Social Media * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The reliable operation of power transmission systems is essential for maintaining the stability and efficiency of the electrical grid. Rapid and accurate detection of faults in transmission lines is crucial for minimizing downtime and preventing cascading failures. This research presents a novel approach to fault detection and classification in transmission lines employing 2D Convolutional Neural Networks (2D-CNN).The proposed methodology leverages the inherent spatial characteristics of fault signals, converting them as 2D scalogram images for input to the CNN model. By converting fault signals into scalogram representations, the network can capture both temporal and frequency domain features, enabling a more comprehensive analysis of fault patterns. The 2D-CNN architecture is designed to automatically learn hierarchical features, allowing for effective discrimination between different fault types. To evaluate the performance of the proposed approach, extensive simulations and experiments were conducted using MATLAB/SIMULINK modeled transmission line data. The results demonstrate the superior fault detection accuracy and classification capabilities of the 2D-CNN model. The performance of the proposed model is evaluated using 10-fold cross-validation, and its effectiveness is assessed by comparing it with current state-of-the-art techniques. Proposed 2D-CNN model has evidenced an accuracy of 99.9074 with ideal dataset for 12- class fault classification and performing consistently in presence of noise, having an accuracy of 99.629 %,99.72 % and 99.814 % in 20.30 and 40 dB noises respectively. The proposed model also verified in high resistance fault condition. The model exhibits robustness to noise and is capable of generalizing well to various fault scenarios. The proposed methodology offers a scalable and efficient solution for transmission line fault analysis, paving the way for the integration of advanced machine learning techniques into the operation and maintenance of power transmission infrastructure.
- Keywords
- Convolutional neural networks, Fault detection, Transmission lines, Wavelet transform,
- Publication type
- Journal Article MeSH