Cystathionine beta-synthase Dotaz Zobrazit nápovědu
Cystathionine beta-synthase (CBS)-deficient homocystinuria (HCU) is the most common inborn error of sulfur amino acid metabolism. The pyridoxine non-responsive form of the disease manifests itself by massively increasing plasma and tissue concentrations of homocysteine, a toxic intermediate of methionine metabolism that is thought to be the major cause of clinical complications including skeletal deformities, connective tissue defects, thromboembolism and cognitive impairment. The current standard of care involves significant dietary interventions that, despite being effective, often adversely affect quality of life of HCU patients, leading to poor adherence to therapy and inadequate biochemical control with clinical complications. In recent years, the unmet need for better therapeutic options has resulted in development of novel enzyme and gene therapies and exploration of pharmacological approaches to rescue CBS folding defects caused by missense pathogenic mutations. Here, we review scientific evidence and current state of affairs in development of recent approaches to treat HCU.
- Klíčová slova
- chaperones, cystathionine beta-synthase, enzyme therapy, gene therapy, homocystinuria, pegtibatinase, proteasome inhibitors,
- MeSH
- cystathionin-beta-synthasa genetika metabolismus MeSH
- homocystinurie * farmakoterapie genetika metabolismus MeSH
- kvalita života MeSH
- lidé MeSH
- missense mutace MeSH
- tromboembolie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cystathionin-beta-synthasa MeSH
Cystathionine beta-synthase (CBS) deficiency is a rare inherited disorder in the methionine catabolic pathway, in which the impaired synthesis of cystathionine leads to accumulation of homocysteine. Patients can present to many different specialists and diagnosis is often delayed. Severely affected patients usually present in childhood with ectopia lentis, learning difficulties and skeletal abnormalities. These patients generally require treatment with a low-methionine diet and/or betaine. In contrast, mildly affected patients are likely to present as adults with thromboembolism and to respond to treatment with pyridoxine. In this article, we present recommendations for the diagnosis and management of CBS deficiency, based on a systematic review of the literature. Unfortunately, the quality of the evidence is poor, as it often is for rare diseases. We strongly recommend measuring the plasma total homocysteine concentrations in any patient whose clinical features suggest the diagnosis. Our recommendations may help to standardise testing for pyridoxine responsiveness. Current evidence suggests that patients are unlikely to develop complications if the plasma total homocysteine concentration is maintained below 120 μmol/L. Nevertheless, we recommend keeping the concentration below 100 μmol/L because levels fluctuate and the complications associated with high levels are so serious.
- MeSH
- betain metabolismus MeSH
- cystathionin-beta-synthasa nedostatek MeSH
- homocystein metabolismus MeSH
- homocystinurie dietoterapie farmakoterapie MeSH
- lidé MeSH
- methionin metabolismus MeSH
- pyridoxin terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
- Názvy látek
- betain MeSH
- cystathionin-beta-synthasa MeSH
- homocystein MeSH
- methionin MeSH
- pyridoxin MeSH
BACKGROUND: For the majority of rare clinical missense variants, pathogenicity status cannot currently be classified. Classical homocystinuria, characterized by elevated homocysteine in plasma and urine, is caused by variants in the cystathionine beta-synthase (CBS) gene, most of which are rare. With early detection, existing therapies are highly effective. METHODS: Damaging CBS variants can be detected based on their failure to restore growth in yeast cells lacking the yeast ortholog CYS4. This assay has only been applied reactively, after first observing a variant in patients. Using saturation codon-mutagenesis, en masse growth selection, and sequencing, we generated a comprehensive, proactive map of CBS missense variant function. RESULTS: Our CBS variant effect map far exceeds the performance of computational predictors of disease variants. Map scores correlated strongly with both disease severity (Spearman's ϱ = 0.9) and human clinical response to vitamin B6 (ϱ = 0.93). CONCLUSIONS: We demonstrate that highly multiplexed cell-based assays can yield proactive maps of variant function and patient response to therapy, even for rare variants not previously seen in the clinic.
- MeSH
- cystathionin-beta-synthasa genetika metabolismus MeSH
- fenotyp MeSH
- genetické testování metody MeSH
- genotyp MeSH
- homocystinurie genetika MeSH
- lidé MeSH
- missense mutace * MeSH
- Saccharomyces cerevisiae - proteiny genetika MeSH
- Saccharomyces cerevisiae MeSH
- testy genetické komplementace metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cystathionin-beta-synthasa MeSH
- Saccharomyces cerevisiae - proteiny MeSH
Classical homocystinuria (HCU) is the most common loss-of-function inborn error of sulfur amino acid metabolism. HCU is caused by a deficiency in enzymatic degradation of homocysteine, a toxic intermediate of methionine transformation to cysteine, chiefly due to missense mutations in the cystathionine beta-synthase (CBS) gene. As with many other inherited disorders, the pathogenic mutations do not target key catalytic residues, but rather introduce structural perturbations leading to an enhanced tendency of the mutant CBS to misfold and either to form nonfunctional aggregates or to undergo proteasome-dependent degradation. Correction of CBS misfolding would represent an alternative therapeutic approach for HCU. In this review, we summarize the complex nature of CBS, its multi-domain architecture, the interplay between the three cofactors required for CBS function [heme, pyridoxal-5'-phosphate (PLP), and S-adenosylmethionine (SAM)], as well as the intricate allosteric regulatory mechanism only recently understood, thanks to advances in CBS crystallography. While roughly half of the patients respond to treatment with a PLP precursor pyridoxine, many studies suggested usefulness of small chemicals, such as chemical and pharmacological chaperones or proteasome inhibitors, rescuing mutant CBS activity in cellular and animal models of HCU. Non-specific chemical chaperones and proteasome inhibitors assist in mutant CBS folding process and/or prevent its rapid degradation, thus resulting in increased steady-state levels of the enzyme and CBS activity. Recent interest in the field and available structural information will hopefully yield CBS-specific compounds, by using high-throughput screening and computational modeling of novel ligands, improving folding, stability, and activity of CBS mutants.
- Klíčová slova
- Heme, High-throughput screening, Homocysteine, Protein misfolding, Pyridoxal-5′-phosphate, S-adenosylmethionine,
- MeSH
- cystathionin-beta-synthasa chemie nedostatek fyziologie MeSH
- homocystinurie farmakoterapie MeSH
- lidé MeSH
- molekulární chaperony terapeutické užití MeSH
- posttranslační úpravy proteinů MeSH
- rychlé screeningové testy MeSH
- sbalování proteinů MeSH
- stabilita enzymů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- cystathionin-beta-synthasa MeSH
- molekulární chaperony MeSH
Misfolding of mutant enzymes may play an important role in the pathogenesis of cystathionine beta-synthase (CBS) deficiency. We examined properties of a series of 27 mutant variants, which together represent 70% of known alleles observed in patients with homocystinuria due to CBS deficiency. The median amount of SDS-soluble mutant CBS polypeptides in the pellet after centrifugation of bacterial extracts was increased by 50% compared to the wild type. Moreover, mutants formed on average only 12% of tetramers and their median activity reached only 3% of the wild-type enzyme. In contrast to the wild-type CBS about half of mutants were not activated by S-adenosylmethionine. Expression at 18 degrees C substantially increased the activity of five mutants in parallel with increasing the amounts of tetramers. We further analyzed the role of solvent accessibility of mutants as a determinant of their folding and activity. Buried mutations formed on average less tetramers and exhibited 23 times lower activity than the solvent exposed mutations. In summary, our results show that topology of mutations predicts in part the behavior of mutant CBS, and that misfolding may be an important and frequent pathogenic mechanism in CBS deficiency.
- MeSH
- cystathionin-beta-synthasa chemie nedostatek genetika MeSH
- Escherichia coli genetika MeSH
- homocystinurie enzymologie genetika MeSH
- katalytická doména genetika MeSH
- katalýza MeSH
- kvarterní struktura proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- mutace * MeSH
- mutantní proteiny chemie genetika metabolismus MeSH
- nízká teplota MeSH
- rozpustnost MeSH
- sbalování proteinů MeSH
- stabilita enzymů MeSH
- terciární struktura proteinů MeSH
- western blotting MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cystathionin-beta-synthasa MeSH
- mutantní proteiny MeSH
BACKGROUND: Cystathionine β-synthase (CBS)-deficient homocystinuria (HCU) is an inherited disorder of sulfur amino acid metabolism with varying severity and organ complications, and a limited knowledge about underlying pathophysiological processes. Here we aimed at getting an in-depth insight into disease mechanisms using a transgenic mouse model of HCU (I278T). METHODS: We assessed metabolic, proteomic and sphingolipidomic changes, and mitochondrial function in tissues and body fluids of I278T mice and WT controls. Furthermore, we evaluated the efficacy of methionine-restricted diet (MRD) in I278T mice. RESULTS: In WT mice, we observed a distinct tissue/body fluid compartmentalization of metabolites with up to six-orders of magnitude differences in concentrations among various organs. The I278T mice exhibited the anticipated metabolic imbalance with signs of an increased production of hydrogen sulfide and disturbed persulfidation of free aminothiols. HCU resulted in a significant dysregulation of liver proteome affecting biological oxidations, conjugation of compounds, and metabolism of amino acids, vitamins, cofactors and lipids. Liver sphingolipidomics indicated upregulation of the pro-proliferative sphingosine-1-phosphate signaling pathway. Liver mitochondrial function of HCU mice did not seem to be impaired compared to controls. MRD in I278T mice improved metabolic balance in all tissues and substantially reduced dysregulation of liver proteome. CONCLUSION: The study highlights distinct tissue compartmentalization of sulfur-related metabolites in normal mice, extensive metabolome, proteome and sphingolipidome disruptions in I278T mice, and the efficacy of MRD to alleviate some of the HCU-related biochemical abnormalities.
- Klíčová slova
- Cystathionine beta-synthase, Homocystinuria, Metabolomics, Methionine restriction, Proteomics,
- MeSH
- cystathionin-beta-synthasa * metabolismus nedostatek genetika MeSH
- homocystinurie * metabolismus genetika MeSH
- játra * metabolismus MeSH
- lipidomika metody MeSH
- metabolomika * metody MeSH
- mitochondrie metabolismus MeSH
- modely nemocí na zvířatech * MeSH
- myši transgenní * MeSH
- myši MeSH
- proteom metabolismus MeSH
- proteomika * metody MeSH
- sfingolipidy * metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cystathionin-beta-synthasa * MeSH
- proteom MeSH
- sfingolipidy * MeSH
Several recent studies describing a solely vascular presentation of cystathionine beta-synthase (CBS) deficiency in adulthood prompted us to analyze the frequency of patients manifesting with vascular complications in the Czech Republic. Between 1980 and 2009, a total of 20 Czech patients with CBS deficiency have been diagnosed yielding an incidence of 1:311,000. These patients were divided into three groups based on symptoms leading to diagnosis: those with vascular complications, with connective tissue manifestation and with neurological presentation. A vascular event such as a clinical feature leading to diagnosis of homocystinuria was present in five patients, while two of them had no other symptoms typical for CBS deficiency at the time of diagnosis. All patients with the vascular manifestation were diagnosed only during the past decade. The median age of diagnosis was 29 years in the vascular, 11.5 years in the connective tissue and 4.5 years in the neurological group. The ratio of pyridoxine responsive to nonresponsive patients was higher in the vascular (4 of 5 patients) and connective tissue groups (6 of 7 patients) than in the neurological group (2 of 8 patients). Mutation c.833T>C (p.I278T) was frequent in patients with vascular (6/10 alleles) and connective tissue presentation (8/14 alleles), while it was not present in patients with neurological involvement (0/16 alleles). During the last decade, we have observed patients with homocystinuria diagnosed solely due to vascular events; this milder form of homocystinuria usually manifests at greater ages, has a high ratio of pyridoxine responsiveness/nonresponsiveness, and the mutation c.833T>C (p.I278T) is often present.
- MeSH
- dítě MeSH
- dospělí MeSH
- homocystinurie komplikace epidemiologie MeSH
- incidence MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nemoci cév diagnóza epidemiologie etiologie MeSH
- předškolní dítě MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
Recent reports suggested that homocystinuria due to cystathionine beta-synthase (CBS) deficiency is a more common inborn error of metabolism than originally thought. In this study we compared the prevalence of homocystinuric alleles ascertained by two different approaches. First, the incidence of homocystinuria estimated by selective biochemical screening in the Czech and Slovak Republics was 1:349,000 (95% CI 1:208,000-1:641,000). The two most common pathogenic mutant alleles found subsequently in these patients, IVS11-2A>C and c.833T>C, had a calculated population prevalence of 0.00042 (95% CI 0.00031-0.00055) and 0.00018 (95% CI 0.00013-0.00023), respectively. Second, to examine the possible negative detection bias of mildly affected patients we determined the prevalence of these two pathogenic mutations in a sample of 1284 unselected newborns. Indeed, the observed prevalence of the c.833T>C allele (0.00195, 95% CI 0.00063-0.00454) was 11x higher than in the previous group suggesting that many homozygotes for the c.833T>C had not been diagnosed by selective biochemical screening. The IVS11-2A>C allele was not detected among 2,568 newborn CBS alleles. The estimated incidence of homocystinuria of 1:83,000, calculated in a combined model, suggests that selective biochemical screening may ascertain only approximately 25% of all homocystinuric patients. In conclusion, homocystinuria in Central Europe may be sufficiently common to consider sensitive newborn screening programs for this disease.
- MeSH
- alely MeSH
- cystathionin-beta-synthasa krev genetika moč MeSH
- DNA chemie genetika MeSH
- genotyp MeSH
- homocystinurie enzymologie epidemiologie genetika MeSH
- incidence MeSH
- lidé MeSH
- mutace MeSH
- mutační analýza DNA MeSH
- novorozenec MeSH
- novorozenecký screening metody MeSH
- prevalence MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- cystathionin-beta-synthasa MeSH
- DNA MeSH
OBJECTIVES: To estimate the frequency of the cystathionine beta-synthase deficiency caused by c.1105C>T mutation in Central Europe compared to Norway, and to examine the pathogenicity of the corresponding p.R369C mutant enzyme. STUDY DESIGN: Mutation c.1105C>T was analyzed in 600 anonymous Czech newborn blood spots. Catalytic activity and quaternary structure of the p.R369C mutant was evaluated after expression in 2 cellular systems. RESULTS: Population frequency of the c.1105C>T mutation was 0.005, predicting the birth prevalence of homocystinuria of 1:40000, which increased to 1:15500 in a model including 10 additional mutations. In Escherichia coli the p.R369C mutant misfolded, and its activity was severely reduced, and expression in Chinese hamster ovary cells enabled proper folding with activity decreased to 63% of the wild-type enzyme. This decreased activity was not due to impaired K(m) for both substrates but resulted from V(max) lowered to 55% of the normal cystathionine beta-synthase enzyme. CONCLUSIONS: The c.1105C>T (p.R369C) allele is common also in the Czech population. Although the p.R369C mutation impairs folding and decreases velocity of the enzymatic reaction, our data are congruent with rather mild clinical phenotype in homozygotes or compound heterozygotes carrying this mutation.
- MeSH
- CHO buňky enzymologie MeSH
- Cricetulus MeSH
- cystathionin-beta-synthasa genetika MeSH
- Escherichia coli enzymologie MeSH
- exprese genu MeSH
- frekvence genu * MeSH
- genotyp MeSH
- homocystinurie enzymologie epidemiologie genetika MeSH
- křečci praví MeSH
- lidé MeSH
- mutace genetika MeSH
- novorozenec MeSH
- prevalence MeSH
- sbalování proteinů MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- novorozenec MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- cystathionin-beta-synthasa MeSH
To explore the pathogenesis of cystathionine beta-synthase (CBS) deficiency and to test the efficacy of pharmacological therapy we examined a panel of metabolites in nine homocystinuric patients under treated and/or untreated conditions. Off pharmacological treatment, the biochemical phenotype was characterized by accumulation of plasma total homocysteine (median 135 micromol/L) and blood S -adenosylhomocysteine (median 246 nmol/L), and by normal levels of guanidinoacetate and creatine. In addition, enhanced remethylation was demonstrated by low serine level (median 81 micromol/L), and by increased concentration of methionine (median 76 micromol/L) and N -methylglycine (median 6.8 micromol/L). Despite the substantially blocked transsulphuration, which was evidenced by undetectable cystathionine and severely decreased total cysteine levels (median 102 micromol/L), blood glutathione was surprisingly not depleted (median 1155 micromol/L). In 5 patients in whom pharmacological treatment was withdrawn, the differences of median plasma total homocysteine levels (125 micromol/L after withdrawal versus 33 micromol/L under treatment conditions), total cysteine levels (139 versus 211 micromol/L) and plasma serine levels (53 versus 103 micromol/L) on and off treatment demonstrated the efficacy of long-term pyridoxine/betaine administration ( p <0.05). The treatment also decreased blood S -adenosylhomocysteine level (133 versus 59 nmol/L) with a borderline significance. In summary,our study shows that conventional treatment of CBS deficiency by diet and pyridoxine/betaine normalizes many but not all metabolic abnormalities associated with CBS deficiency. We propose that the finding of low plasma serine concentration in untreated CBS-deficient patients merits further exploration since supplementation with serine might be a novel and safe component of treatment of homocystinuria.
- MeSH
- dítě MeSH
- dospělí MeSH
- homocystinurie metabolismus terapie MeSH
- lidé MeSH
- mladiství MeSH
- předškolní dítě MeSH
- S-adenosylhomocystein krev MeSH
- S-adenosylmethionin krev MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- S-adenosylhomocystein MeSH
- S-adenosylmethionin MeSH